Humans and Compression EE 274, Fall 23

Announcements

- Next Lecture (Mon, 12/4)
 - Guest talk from Kedar Tatwawadi on Video Compression
 - Course summary and wrap-up
- Reminder: no lecture on Wed, 12/6; instead we will have final project presentations. We will release more information by this weekend.
 - Main Idea: present to peers what you learnt and results so-far
 - 5 mins presentation, 5 mins QnA
 - Mandatory attendance

So far in Lossy Compression

- Quantization as a core mechanism of introducing loss
- Theoretical underpinnings of rate-distortion trade-off
- Optimal solutions in case of Gaussian sources and MSE distortion
- Image Compression and JPEG
- Learnt Image Compression

This class

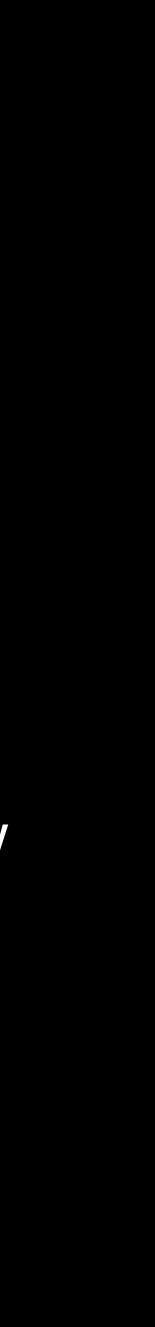
All multimedia is eventually consumed by humans:

Role of human sensory perception in designing lossy multimedia compressors

- perception
- Going beyond MSE as a distortion metric

• Why some of the design decisions were made in the image compressors we saw

How can we further improve image/video compression accounting for human



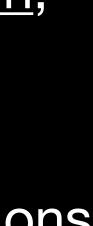
Resources

- Foundations of Vision, Brian A. Wandell
 - Check out PSYCH 221: Image Systems Engineering
- Papers: LPIPS, HiFiC, RDP Tradeoff, DISTS
- Blogs:
- Videos: <u>Color Space</u>, <u>Opponent Color Theory</u>
- Images obtained by doing a simple google search \bullet

Disclaimer some of the material presented in this class will have hand-wavy coverage from neuro-scientific and psycho-visual literature

Perceptual Video Compression: A Survey, SSIM, MS-SSIM, Image Quality Metric Comparison,

VMAF, The ultimate guide to JPEG including JPEG Compression and Encoding, Optical Illusions



Teaser 1 audio compression

Sampling rate of 44.1 kHz is very common in encoded audio. Can you guess why?

Why do we have 2 channels (stereo) in encoded audio?

~/Downloads

General Complete nam Format File size Duration Overall bit Overall bit Album Album/Perfor Track name Performer Genre

Audio Format Format version Format profile Format settings Duration Bit rate mode Bit rate mode Bit rate Channel(s) Sampling rate Frame rate Compression mode Stream size

s > mediainfo	pokemon_theme.mp3	
ne		pokemon_theme.mp3 MPEG Audio 3.03 MiB 3 min 18 s
rate mode		Constant
rate		128 kb/s
		Pokemon X: Ten Years of Pokémon
rmer		Pokemon
		Pokemon Theme
		Pokemon
		Soundtrack
		MPEG Audio
ion	:	Version 1
ile	:	Layer 3
ings	i i i i i i i i i i i i i i i i i i i	Joint stereo / Intensity Stereo + MS St
		3 min 18 s
de		Constant
		128 kb/s
	1. I.	2 channels
te		44.1 kHz
		38.281 FPS (1152 SPF)
mode		Lossy

: 3.02 MiB (100%)

tereo

Teaser 2 image compression

Given source image (a) which of the following images do you prefer visually?

(b), (c), (d), (e), (f)

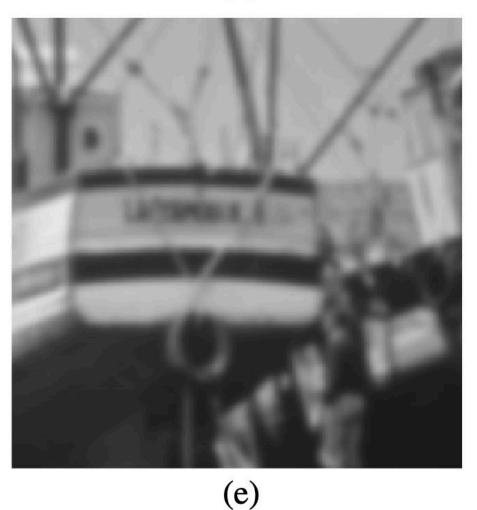
Given source image (a) which of the following images does a compressor with MSE distortion prefer?

(b), (c), (d), (e), (f)

(a)

(b)

(c)

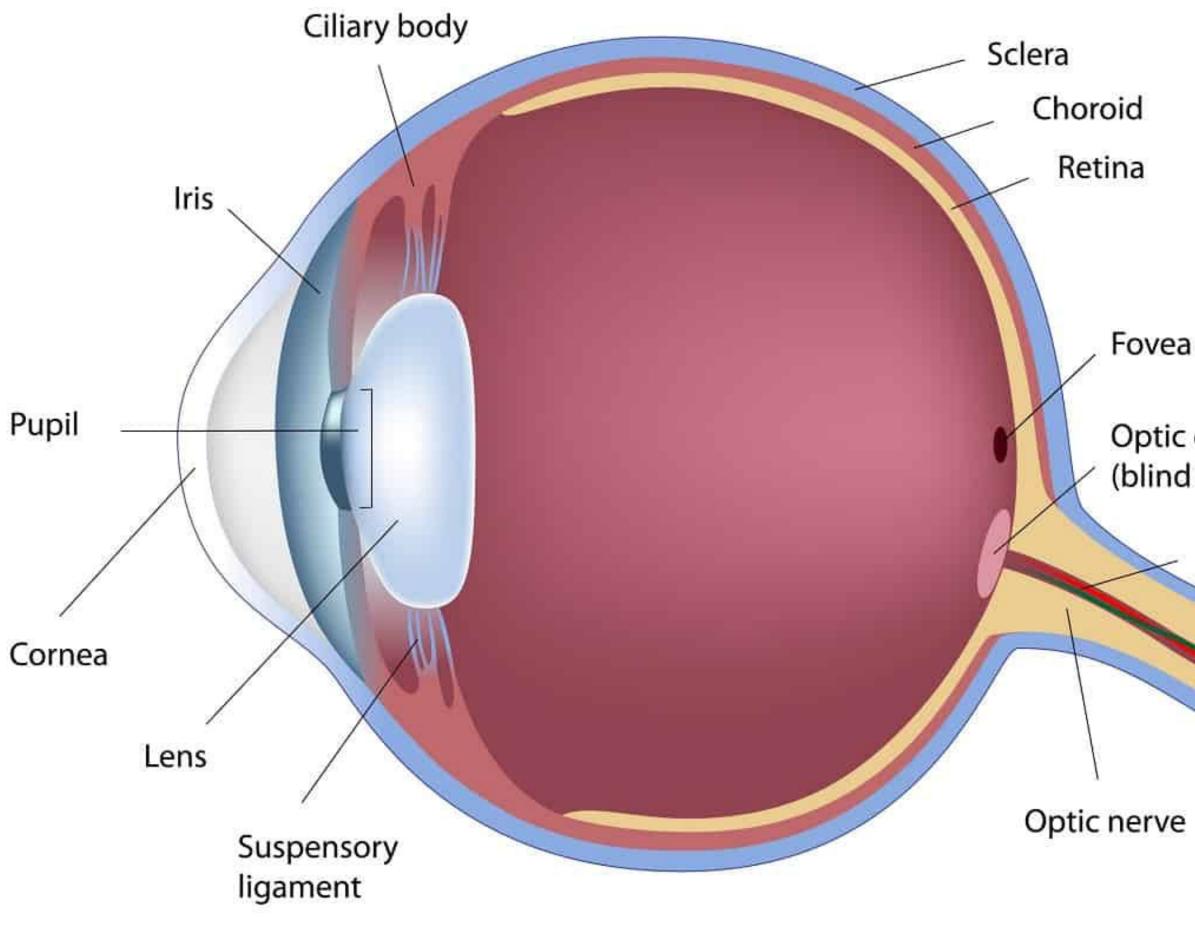


Rest of the lecture

- Will get some preliminary understanding of how human vision works
- See it's role in design of traditional compressors such as JPEG
- Learn more about perceptual metrics
- How to take into account perceptual properties in the RD framework

Part 1: Human Vision and it's implications on image encoding

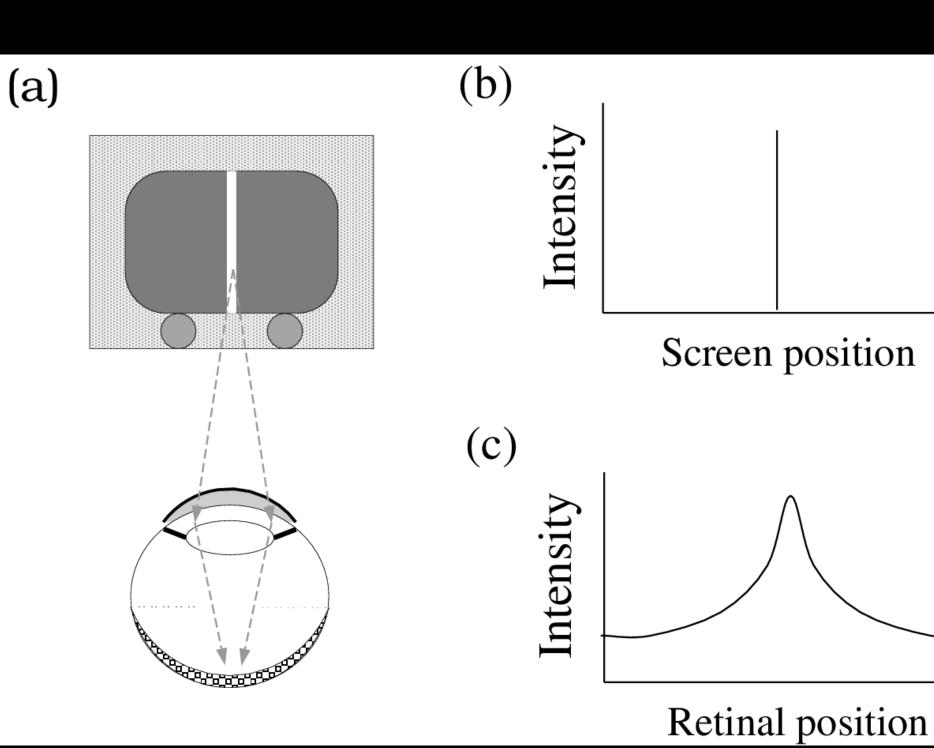
Human Eye Anatomy

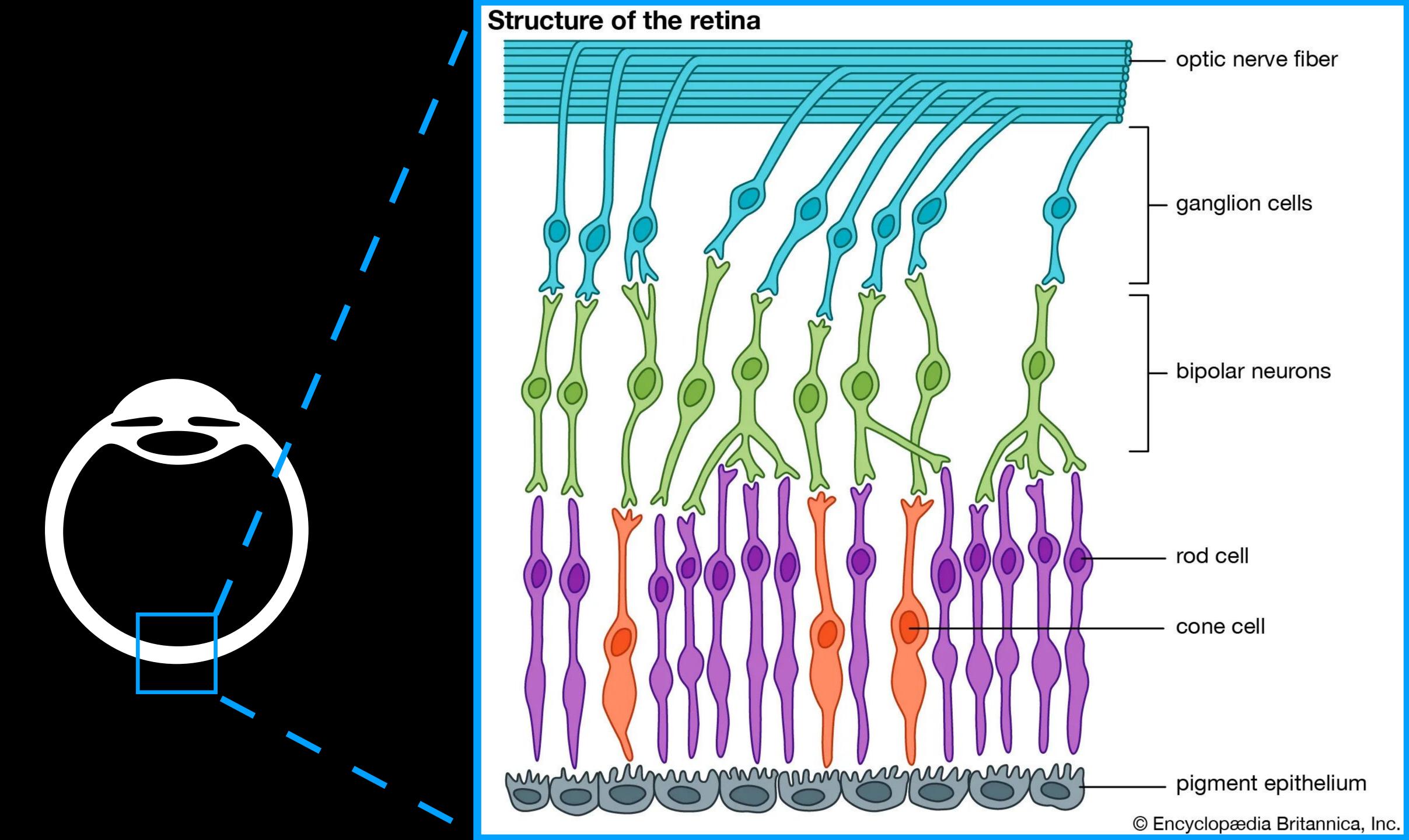


Fovea centralis

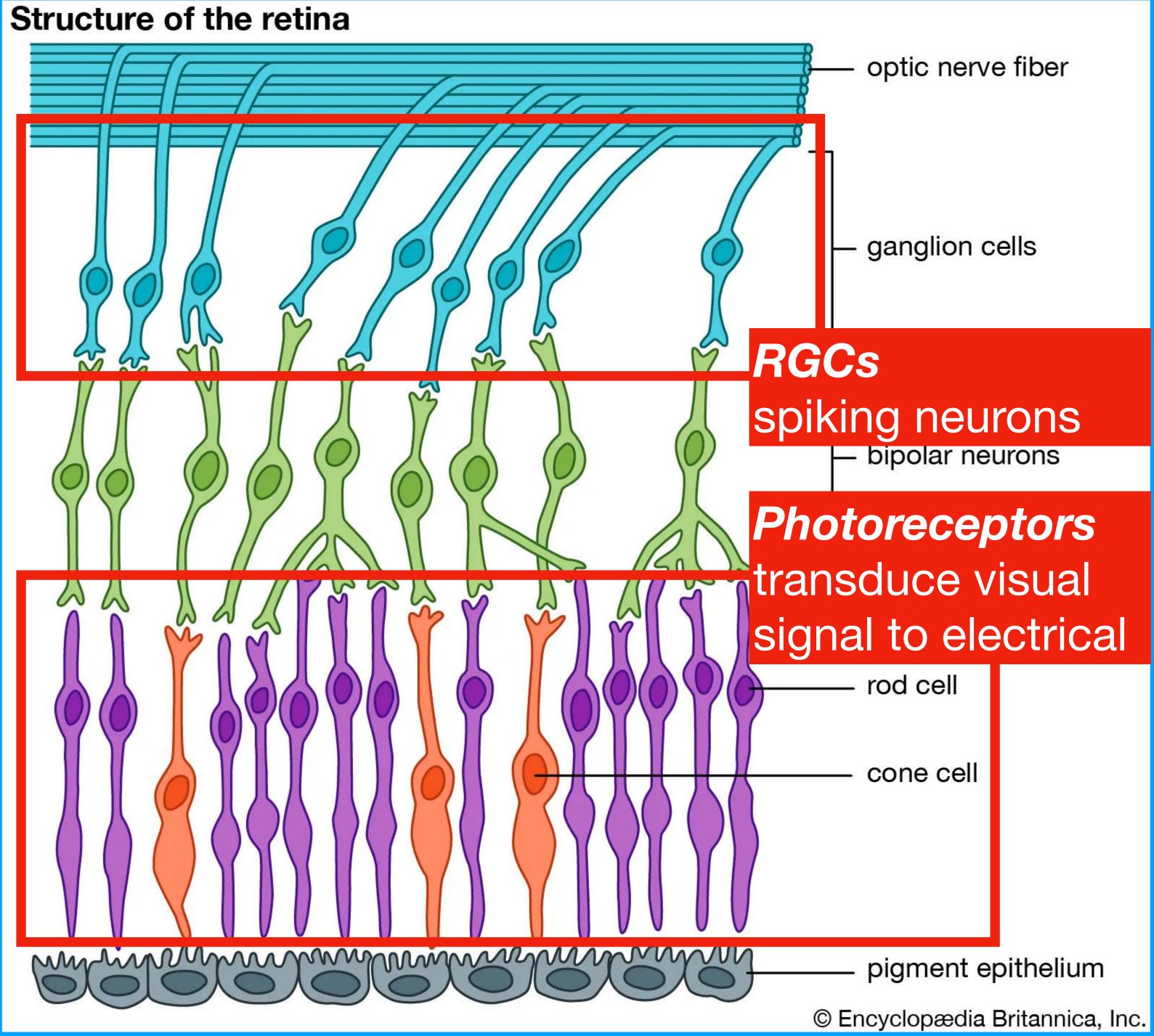
Optic disc (blind spot)

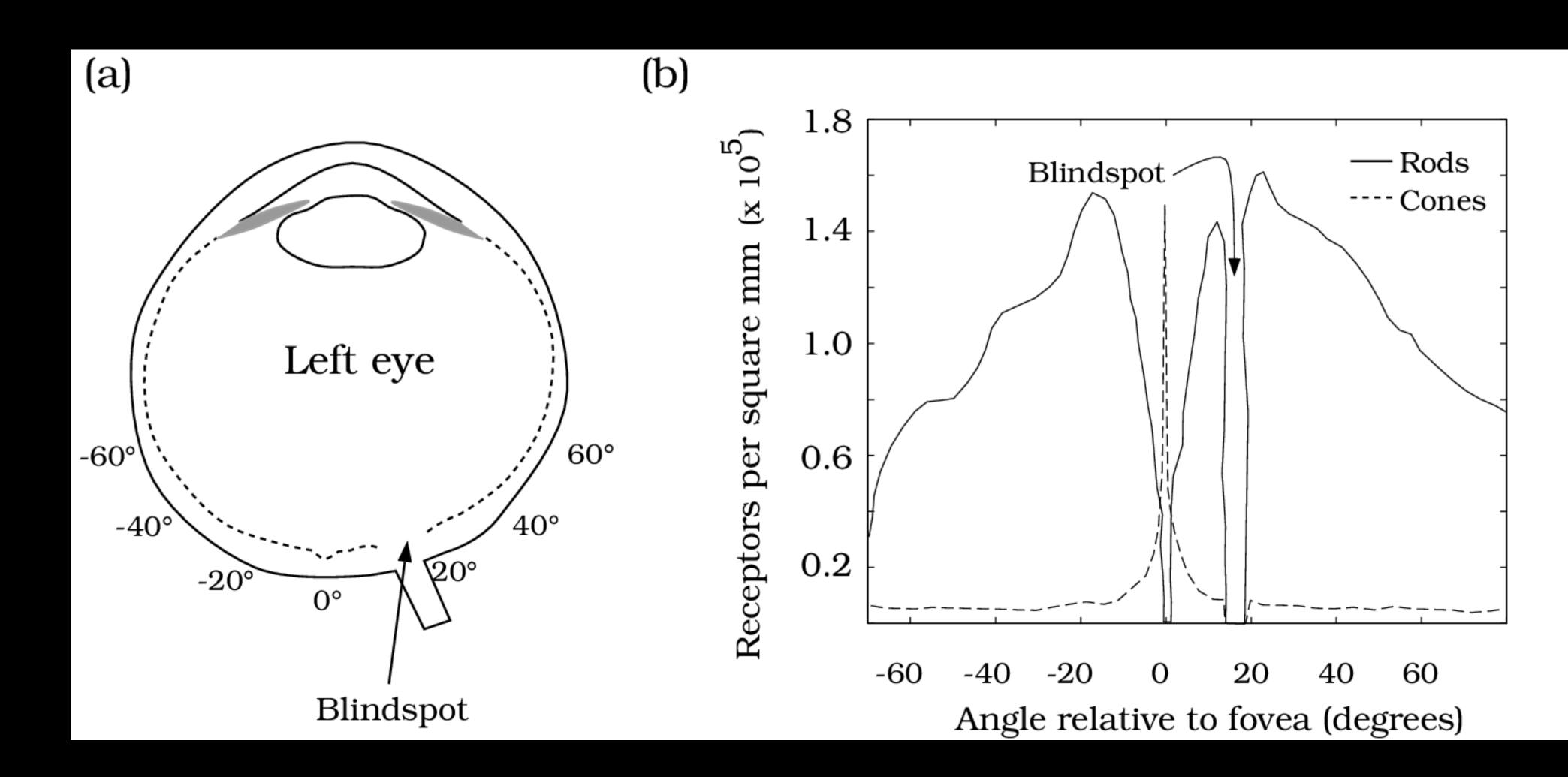
Blood vessels





visual cortex



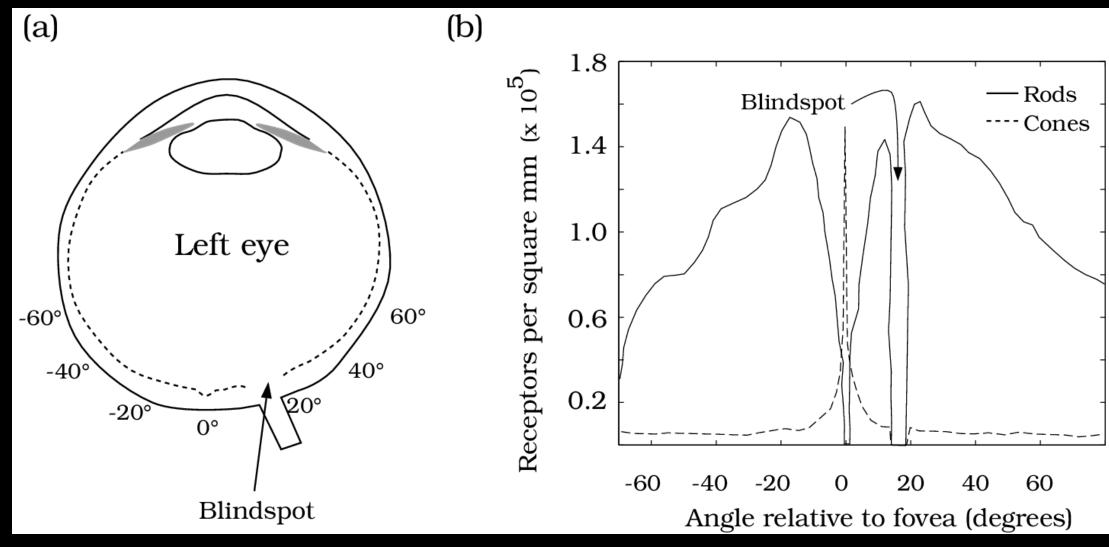


• **Rods** responsible for encoding intensity, $\sim 100 \times 10^6$, absent from **fovea**

• Cones responsible for encoding colors, $\sim 5 \times 10^6$, concentrated only in fovea

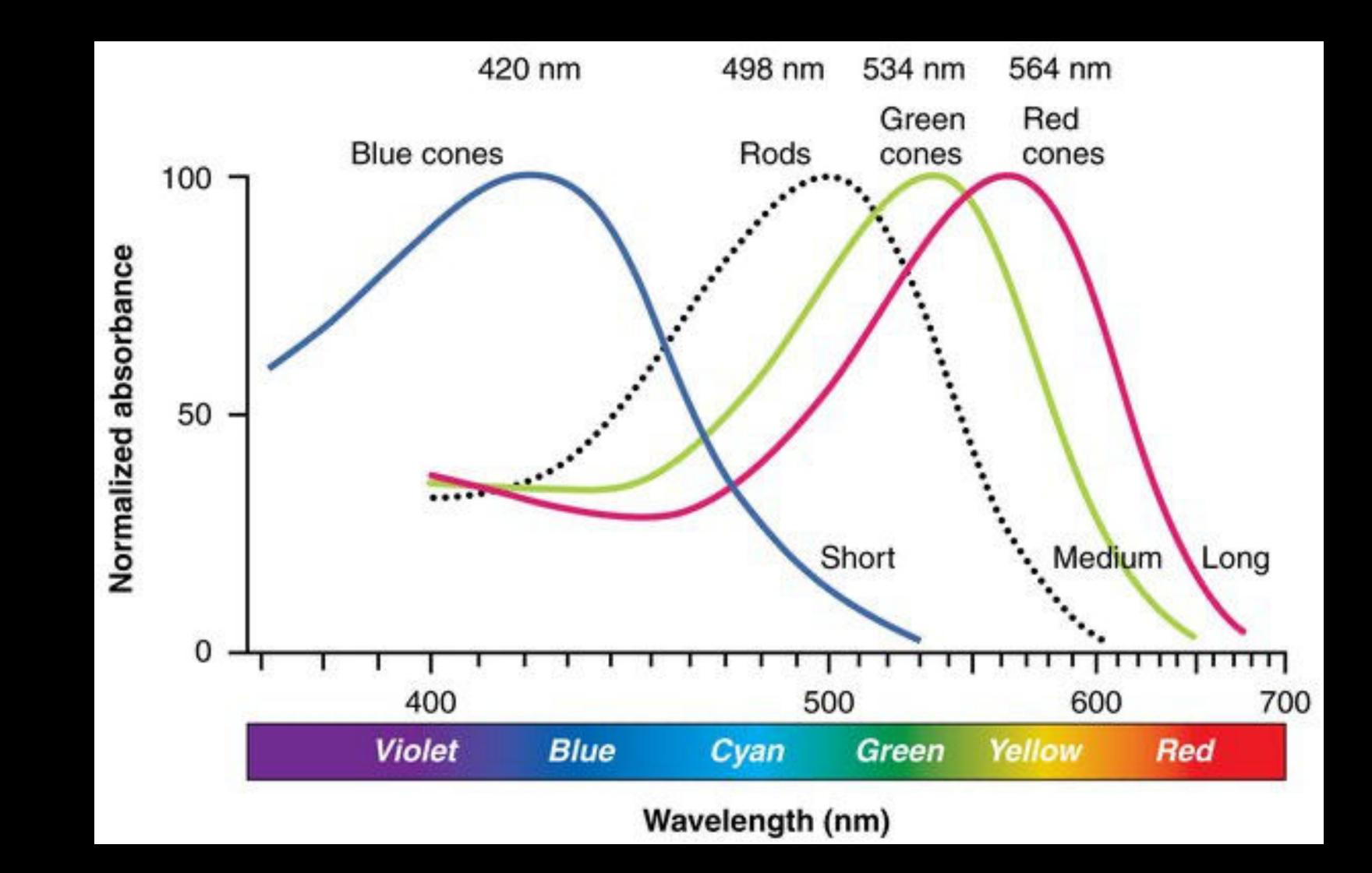
Some Fun (and useful) **Observations**

- called Weber's Law
- called *Foveation*

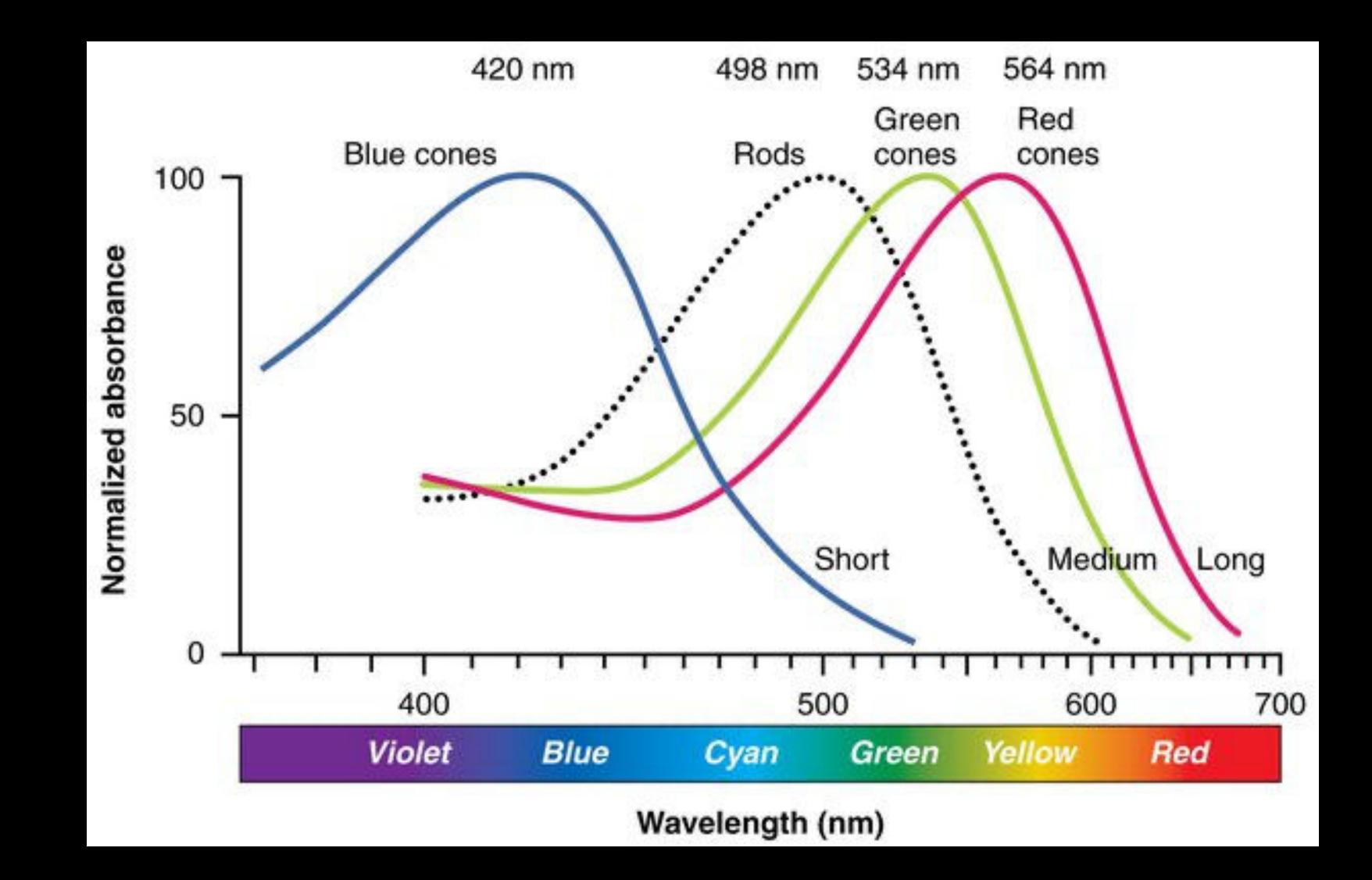


- **Rods** are extremely sensitive to intensity, respond even to single photon! Responsible for adaptation to wide-range of luminance in natural world. The amount of just noticeable-luminance is proportional to luminance,

- Fovea is region of high visual acuity and responsible for high spatial resolution. We are constantly sampling a visual scene to align it with our fovea,

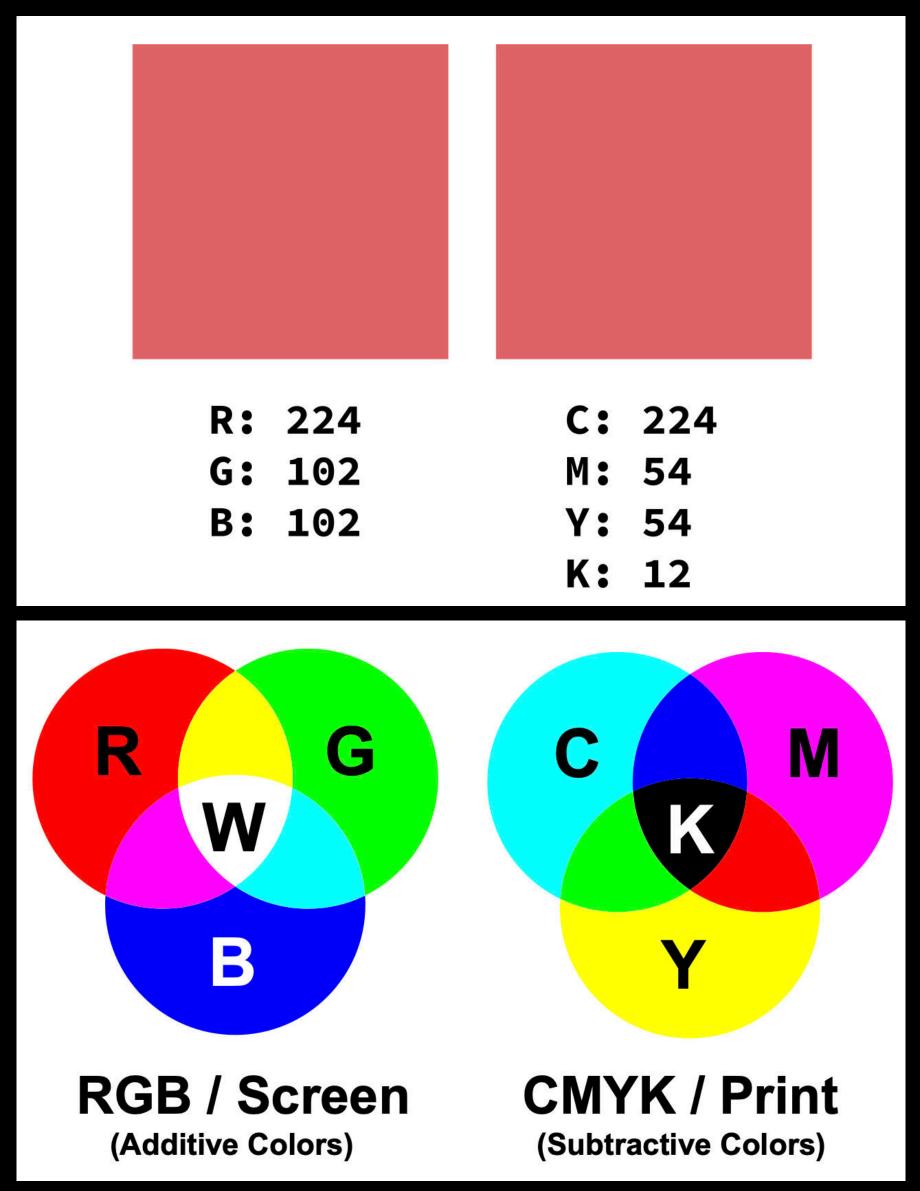


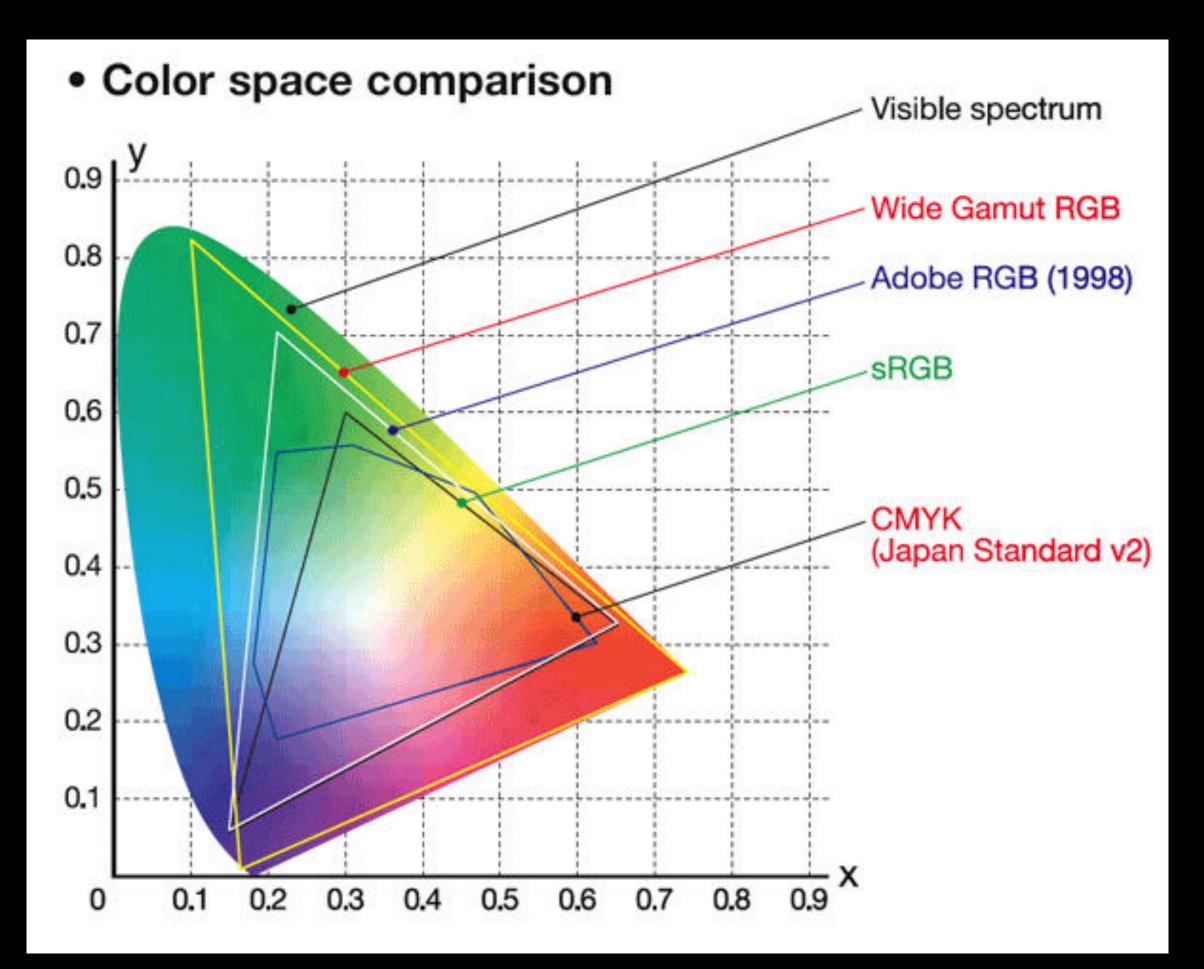
Cones come in three varieties: L, M, S cones
Q. What is the significance of the L, M, S cones?



Cones come in three varieties: L, M, S cones
Origin of RGB color model! Called trichromatic theory of color vision

But what is a color model? Is RGB special?





CIE 1931 xy chromaticity diagram

Illusion Time

Lilac Chaser

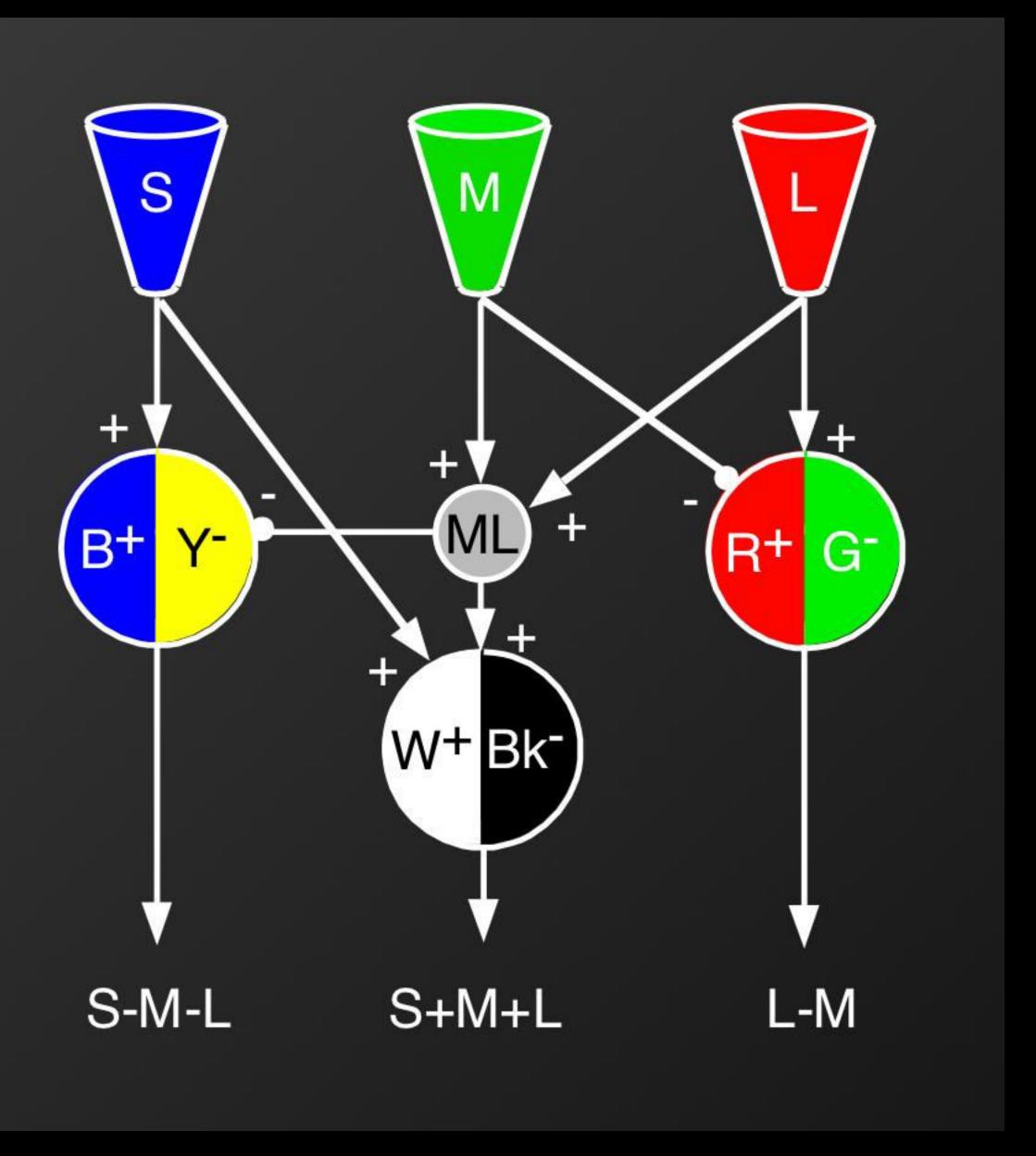
Opponent-process theory of color vision

Instead of RGB we perceive colors through three opponent channels:

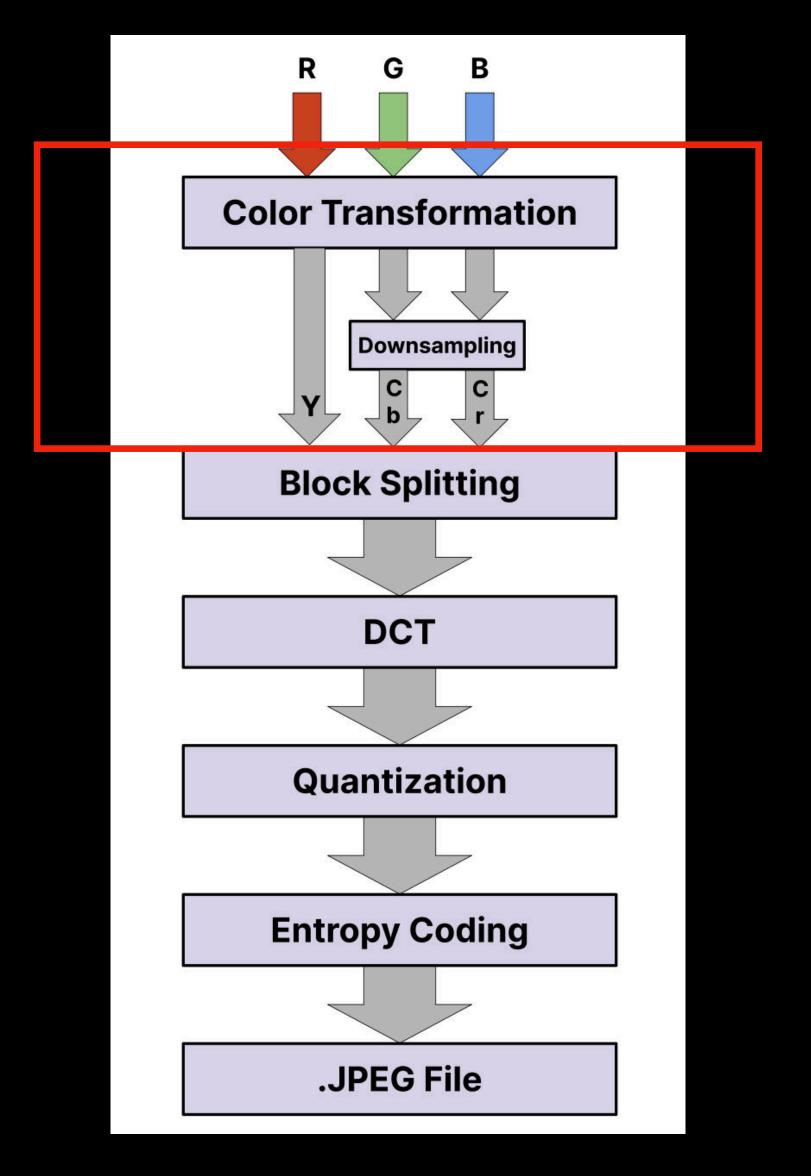
White-Black

Blue-Yellow

Red-Green



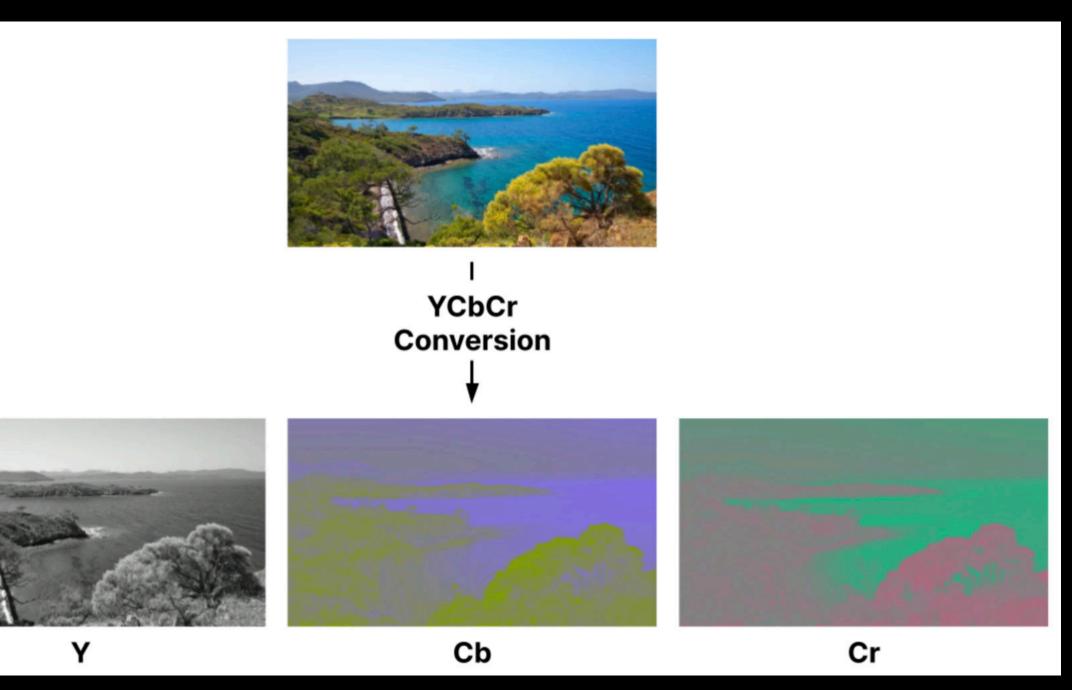
Recall: JPEG Image Compression



to YCbCr*

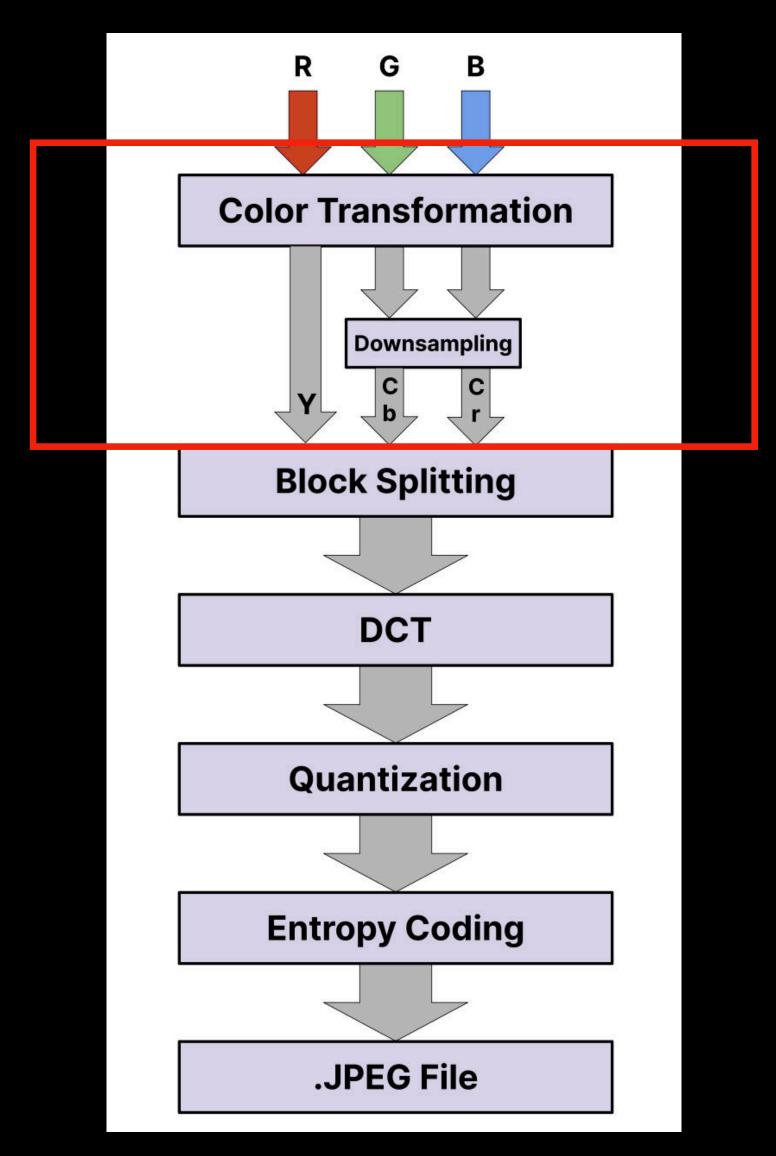
But why?

First step is Color Transformation from **RGB**



*Might hear YUV, Y'UV, YCbCr, Y'CbCr Consider them all same for today.

Recall: JPEG Image Compression



YCbCr

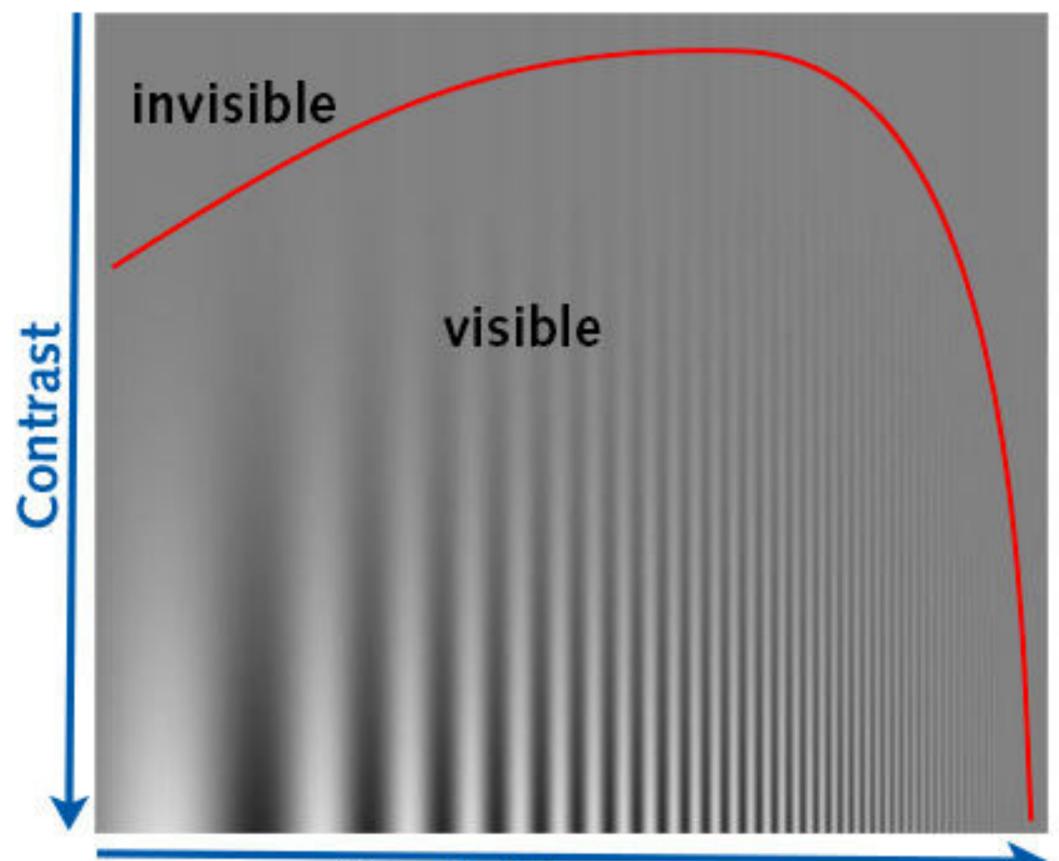
But why?

- Reason 1: perceptual color space based on opponent process theory of color vision

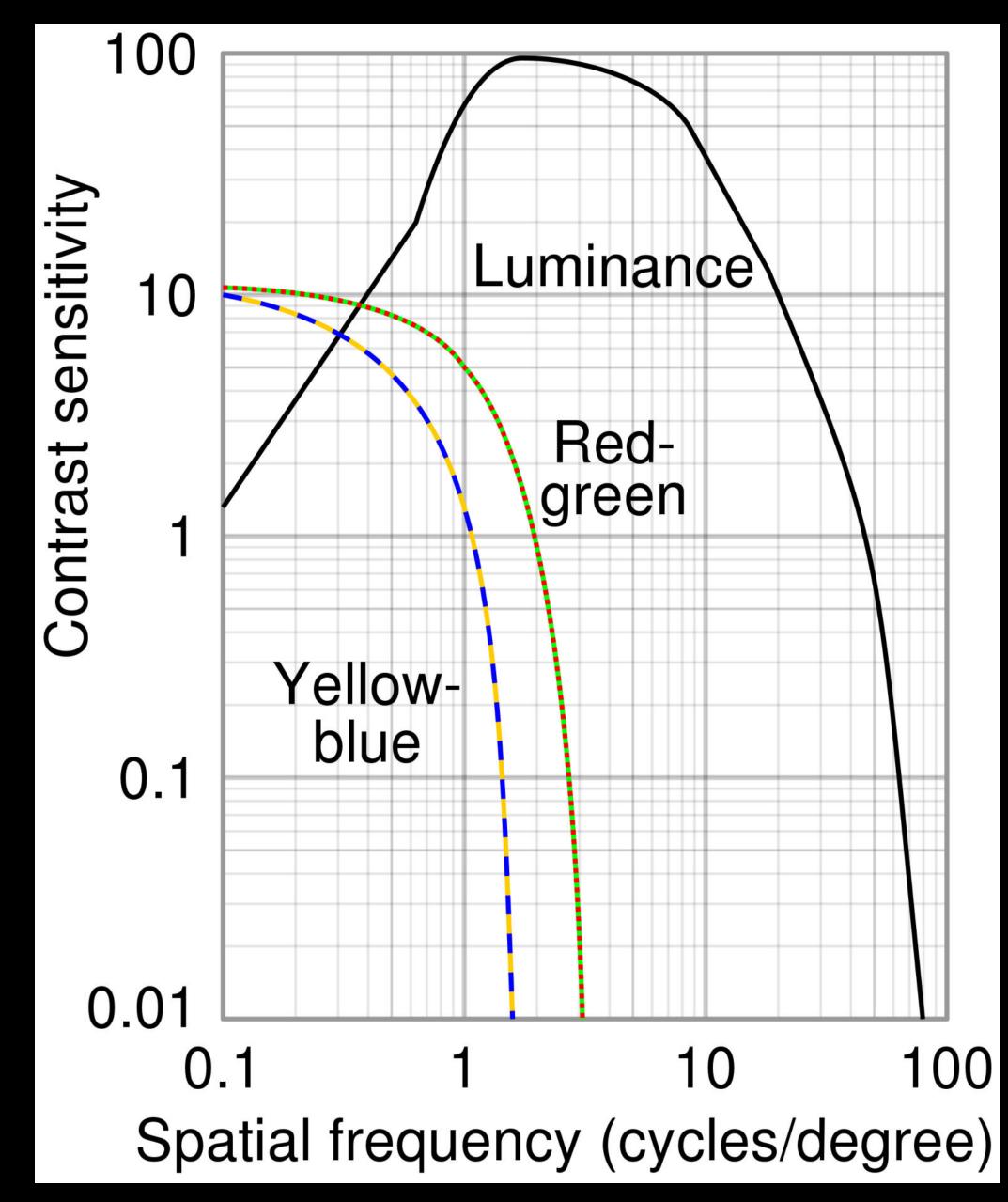
- Reason 2: different contrast sensitivity of Y, Cb, Cr channels

First step is Color Transformation from **RGB** to

Contrast Sensitivity



Spatial Frequency

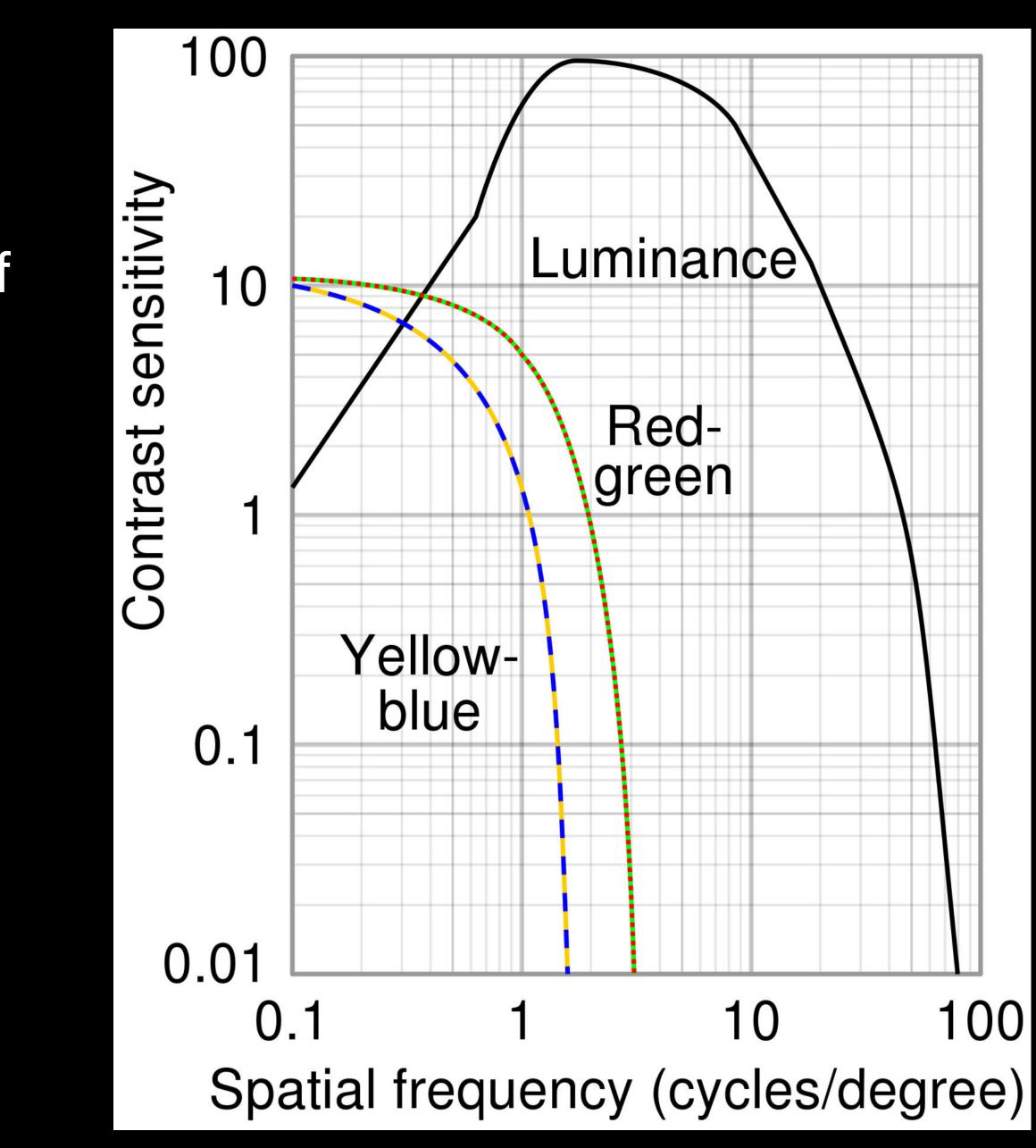


Contrast Sensitivity

The contrast sensitivity curve has lots of implications for us:

- Higher quantization of highfrequency DCT components
- Chroma Subsampling
- Separate Quantization Matrices for Luma and Chroma Components

All of these are used in JPEG



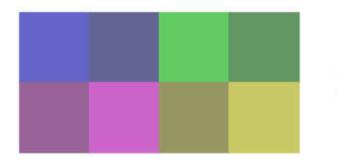
Chroma Subsampling *downsample color information in Cb and Cr channels*

YCrCB

4:4:4

Full horizontal resolution Full vertical resolution

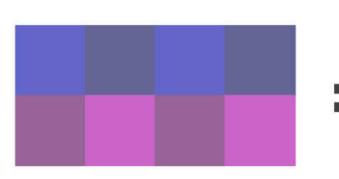
4:2:2 ¹/₂ horizontal resolution Full vertical resolution

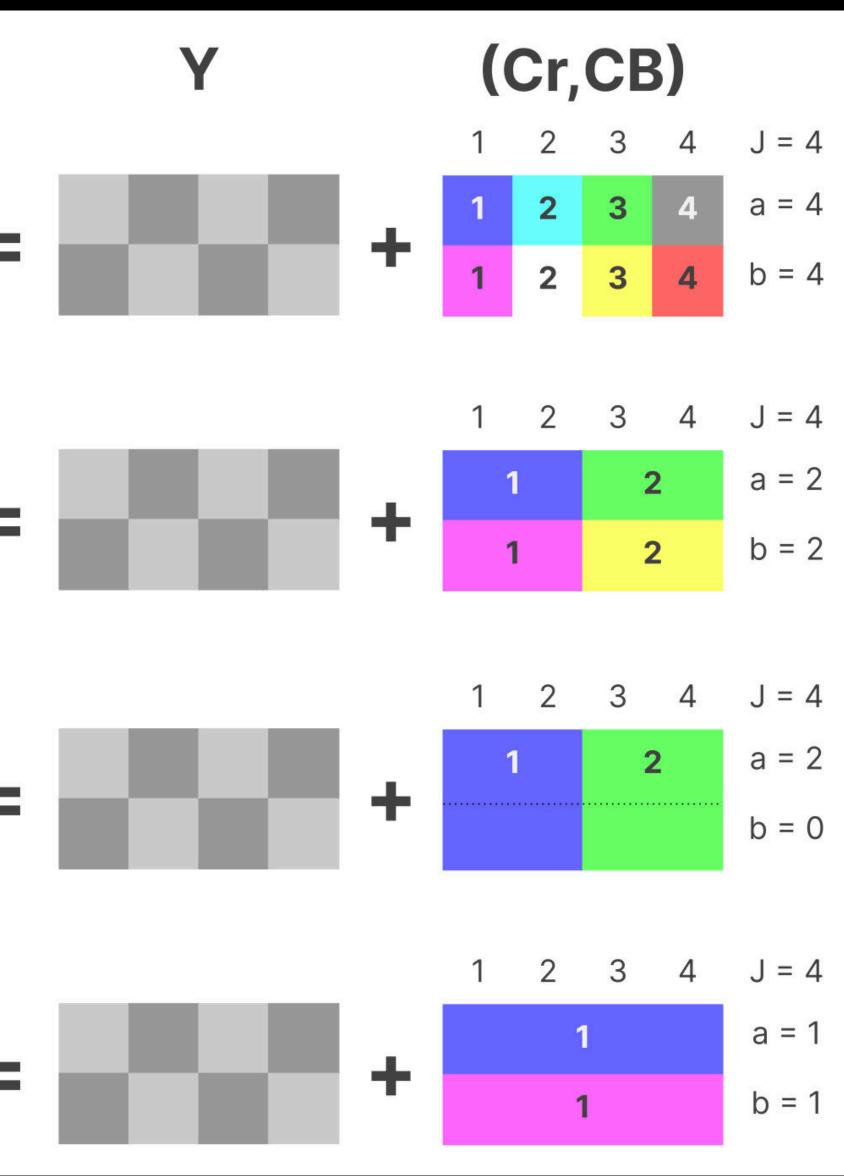


4:2:0

¹/₂ horizontal resolution ¹/₂ vertical resolution

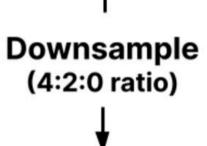
4:1:1 ¹/₄ horizontal resolution Full vertical resolution

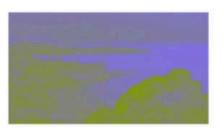




Chroma Subsampling downsample color information in Cb and Cr channels; Demo

YCbCr Conversion





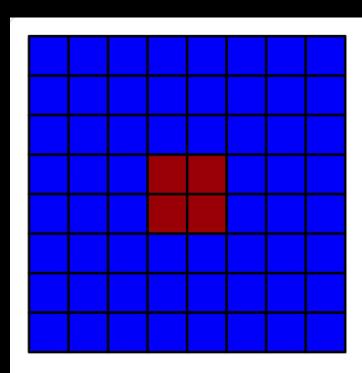
Downsample (4:2:0 ratio)

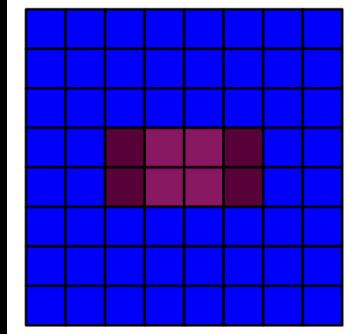
No Downsampling 429 kb

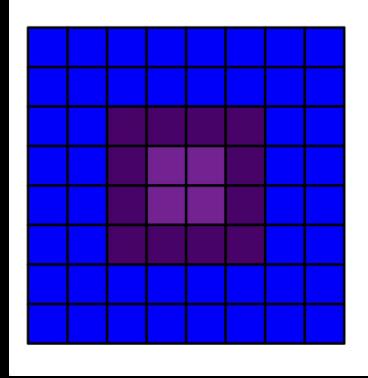
JPEG Compression **No Downsampling** 323 kb

JPEG Compression 4:2:0 Downsampling 176 kb

Chroma Subsampling Artifacts







4:4:4

Full horizontal resolution Full vertical resolution

4:2:2

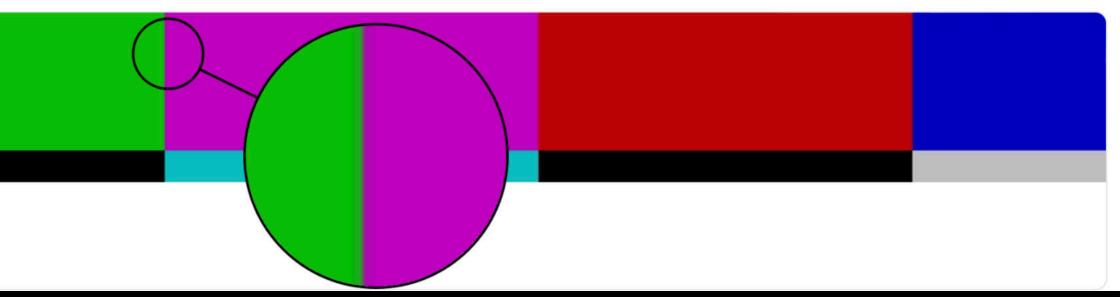
1/2 horizontal resolution Full vertical resolution

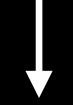
4:2:0 1/2 horizontal resolution 1/2 vertical resolution

* Each square represents 1 pixel

the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG, the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG, the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG. the quick brown fox jumped over the lazy dog. THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.



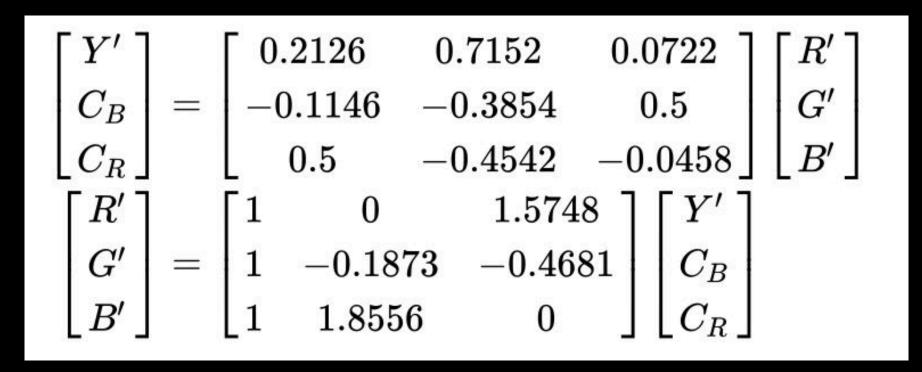


Ok, but what exactly is RGB → YCbCr transform?

Answer not as simple as it sounds because it depends on color-spaces!

Y' =	16 +	$\frac{65.481\cdot R_D'}{255}+$	$\frac{128.553 \cdot G'_D}{255} +$	$\frac{24.966\cdot B_D'}{255}$
$C_B =$	128 -	$\frac{37.797\cdot R_D'}{255}-$	$\frac{74.203\cdot G_D'}{255}+$	$\frac{112.0\cdot B_D'}{255}$
$C_R =$	128 +	$\frac{112.0\cdot R_D'}{255}-$	$\frac{93.786\cdot G_D'}{255}-$	$\frac{18.214\cdot B_D'}{255}$

ITU-R BT.601 conversion used with RGB (~SDTV) colorspace



ITU-R BT.709 conversion used with sRGB (~HDTV) colorspace

Different Quantization Matrix for Luma and Chroma Components

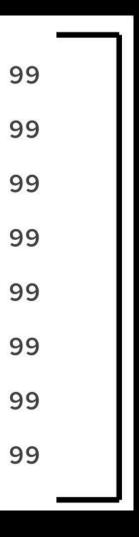
-									
	16	11	10	16	24	40	51	61	
	12	12	14	19	26	58	60	55	
	14	13	16	24	40	57	69	56	
	14	17	22	29	51	87	80	62	
	18	22	37	56	68	109	103	77	
	24	35	55	64	81	104	113	92	
	49	64	78	87	103	121	120	101	
	72	92	95	98	112	100	103	99	

Luma base quantization matrix (quality level 50)

Recall: 8 x 8 2D-DCT transforms; lower right represents higher frequency component

17	18	24	47	99	99	99
18	21	26	66	99	99	99
24	26	56	99	99	99	99
47	66	99	99	99	99	99
99	99	99	99	99	99	99
99	99	99	99	99	99	99
99	99	99	99	99	99	99
99	99	99	99	99	99	99

Chroma base quantization matrix (quality level 50)



Let's look at a JPEG encoded image

~/D Exi Fil Dire Fil File Fil Fil File Fil Fil MIME JFI Resc Re Re = X 1 Orie Colo Exi Exi Cur IPT Imag Imag Enco Bits Colo Y Cb Image Mega

ownloads > exiftool stanfor	d_`	logo.jpg
Tool Version Number	:	12.51
e Name	1	stanford_logo.jpg
ectory	=	
e Size	=	26 kB
e Modification Date/Time	-	2022:11:29 01:02:43-08:00
e Access Date/Time	:	2022:11:29 01:06:41-08:00
e Inode Change Date/Time	:	2022:11:29 01:03:09-08:00
e Permissions	-	-rw-rr
е Туре	-	JPEG
e Type Extension	:	jpg
Туре	-	image/jpeg
[:] Version	:	1.01
lution Unit	:	None
solution	1	72
solution	1	72
Byte Order	=	Big-endian (Motorola, MM)
entation	-	Horizontal (normal)
or Space	:	sRGB
[:] Image Width	:	400
[:] Image Height	-	400
ent IPTC Digest	-	d41d8cd98f00b204e9800998ecf8427e
🕻 Digest	:	d41d8cd98f00b204e9800998ecf8427e
je Width	:	400
le Height	:	400
ding Process	-	Baseline DCT, Huffman coding
Per Sample	-	8
r Components	1	3
o Cr Sub Sampling	:	YCbCr4:2:0 (2 2)
je Size	-	400×400
pixels	:	0.160

Part 2: Human Vision and it's implications on *Distortion Metric*

MSE as a distortion metric is inadequate

We will look into three class of perceptual metrics as distortion:

- modeling low-level human vision features e.g. SSIM, MS-SSIM, VIF
- learnt ML models as perceptual metrics e.g. LPIPS
- combining metrics using supervised human subjective data e.g. VMAF, DISTS

(a)

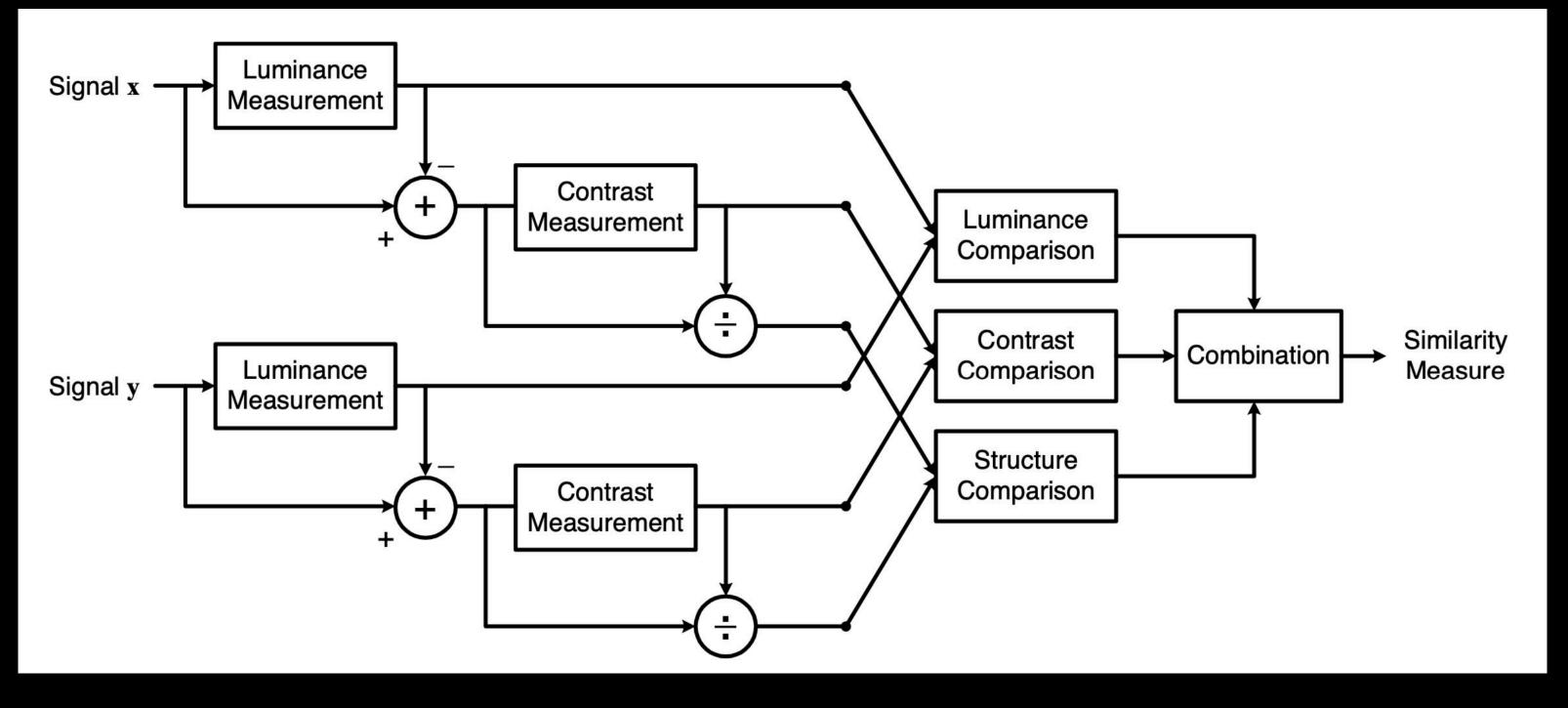
(b)

(e)

SSIM structural similarity modeling low-level human vision features

Uses 3 key features to compare two images:

luminance, contrast, structure



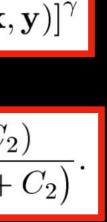
$$l(\mathbf{x}, \mathbf{y}) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}$$

$$c(\mathbf{x}, \mathbf{y}) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$

$$s(\mathbf{x}, \mathbf{y}) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}.$$

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\beta}$$

SSIM(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$



SSIM structural similarity modeling low-level human vision features

But apply them over local patches instead of globally

- spatial non-stationarity of image features
- spatial non-stationarity of image distortions
- foveation

How:

calculate locally and then take mean

uses gaussian kernel for smoothening to model foveation

$l(\mathbf{x}, \mathbf{y}) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}$ $c(\mathbf{x}, \mathbf{y}) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$ $s(\mathbf{x}, \mathbf{y}) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\beta}$$

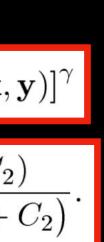
SSIM(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$

$$\mu_x = \sum_{i=1}^N w_i x_i$$

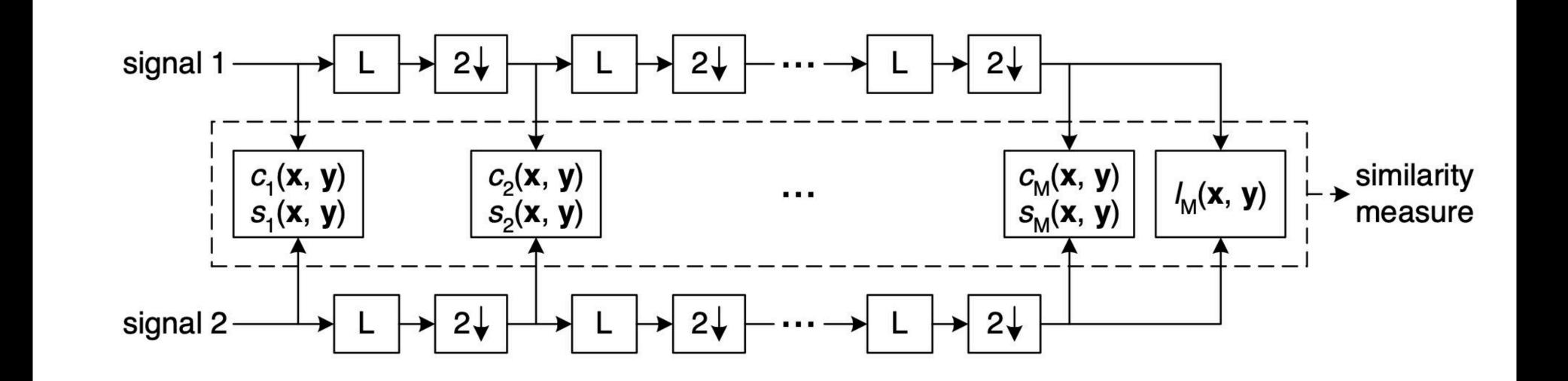
$$\sigma_x = \left(\sum_{i=1}^N w_i (x_i - \mu_x)^2\right)^{\frac{1}{2}}$$

$$\sigma_{xy} = \sum_{i=1}^N w_i (x_i - \mu_x) (y_i - \mu_y).$$

$$MSSIM(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} SSIM(\mathbf{x}_j, \mathbf{y}_j)$$



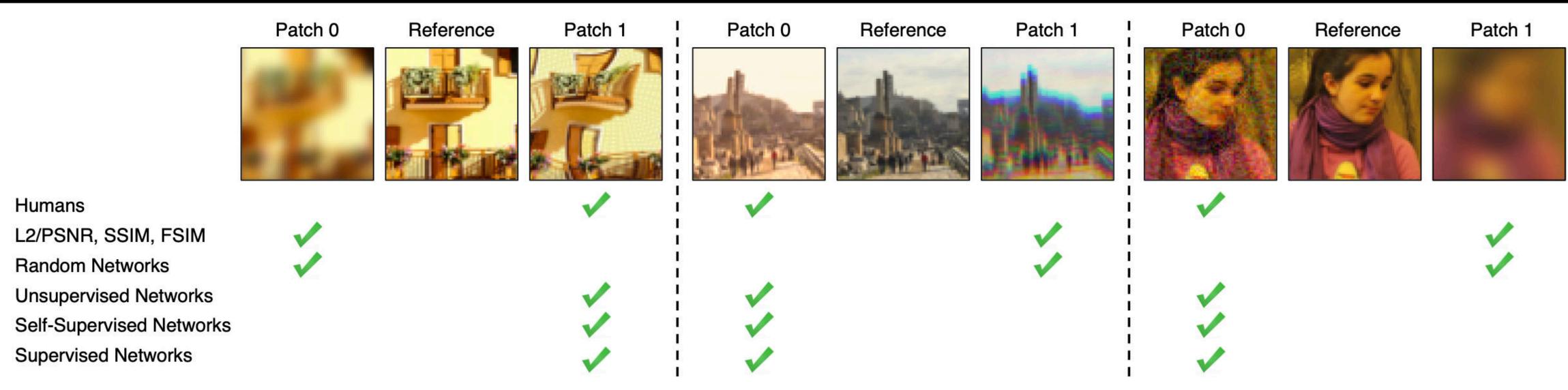
MS-SSIM multi-scale structural similarity SSIM + better accounting for spatial frequency



 $SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$

$$\mathrm{SSIM}(\mathbf{x}, \mathbf{y}) = [l_M(\mathbf{x}, \mathbf{y})]^{\alpha_M} \cdot \prod_{j=1}^M [c_j(\mathbf{x}, \mathbf{y})]^{\beta_j} [s_j(\mathbf{x}, \mathbf{y})]^{\gamma_j}$$

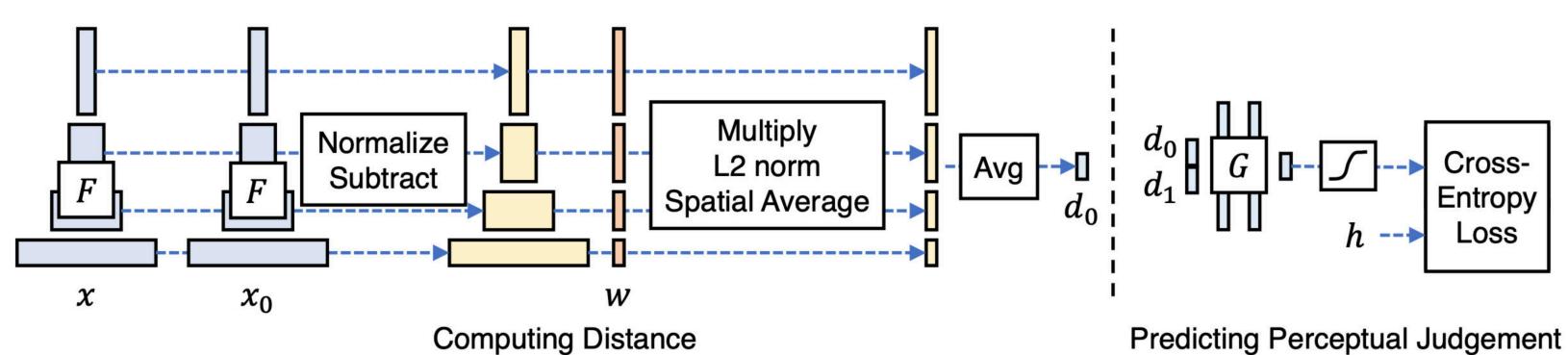
L P PS Learned Perceptual mage Patch Similarity The Unreasonable Effectiveness of Deep Features as a Perceptual Metric



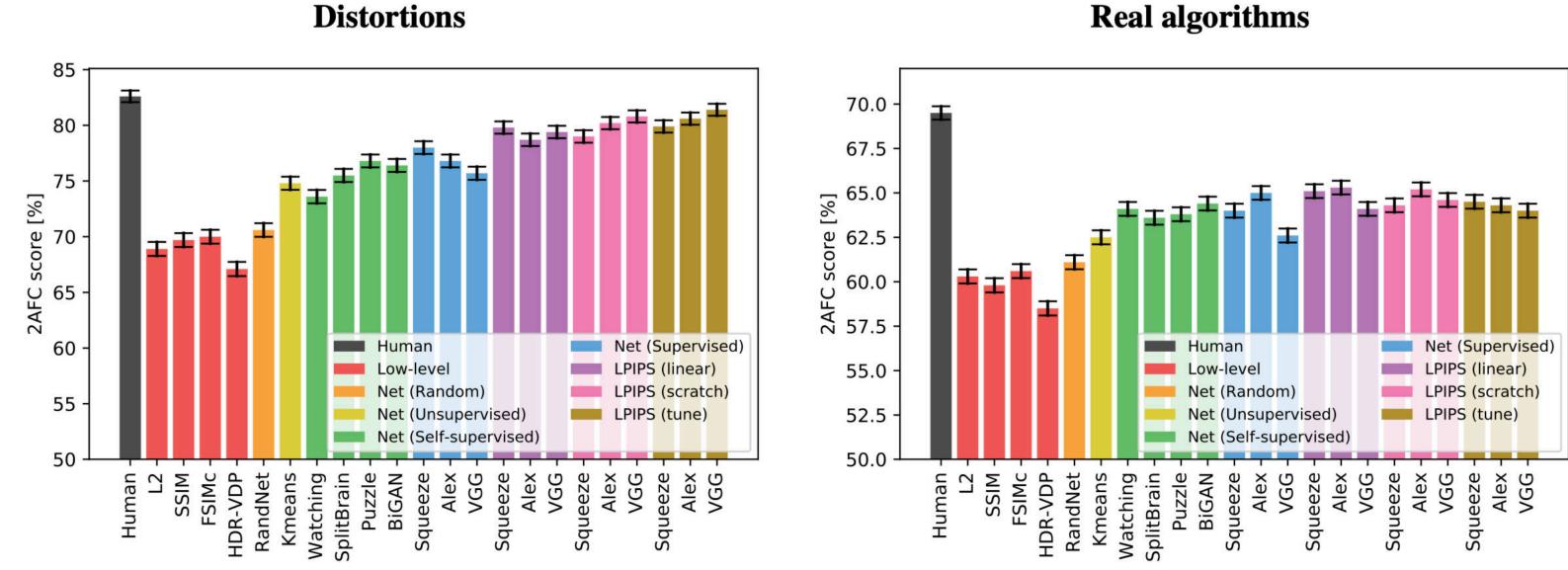
"Our results suggest that perceptual similarity is an emergent property shared across deep visual representations."

Use deep embeddings as a feature space for learning perceptual metric.

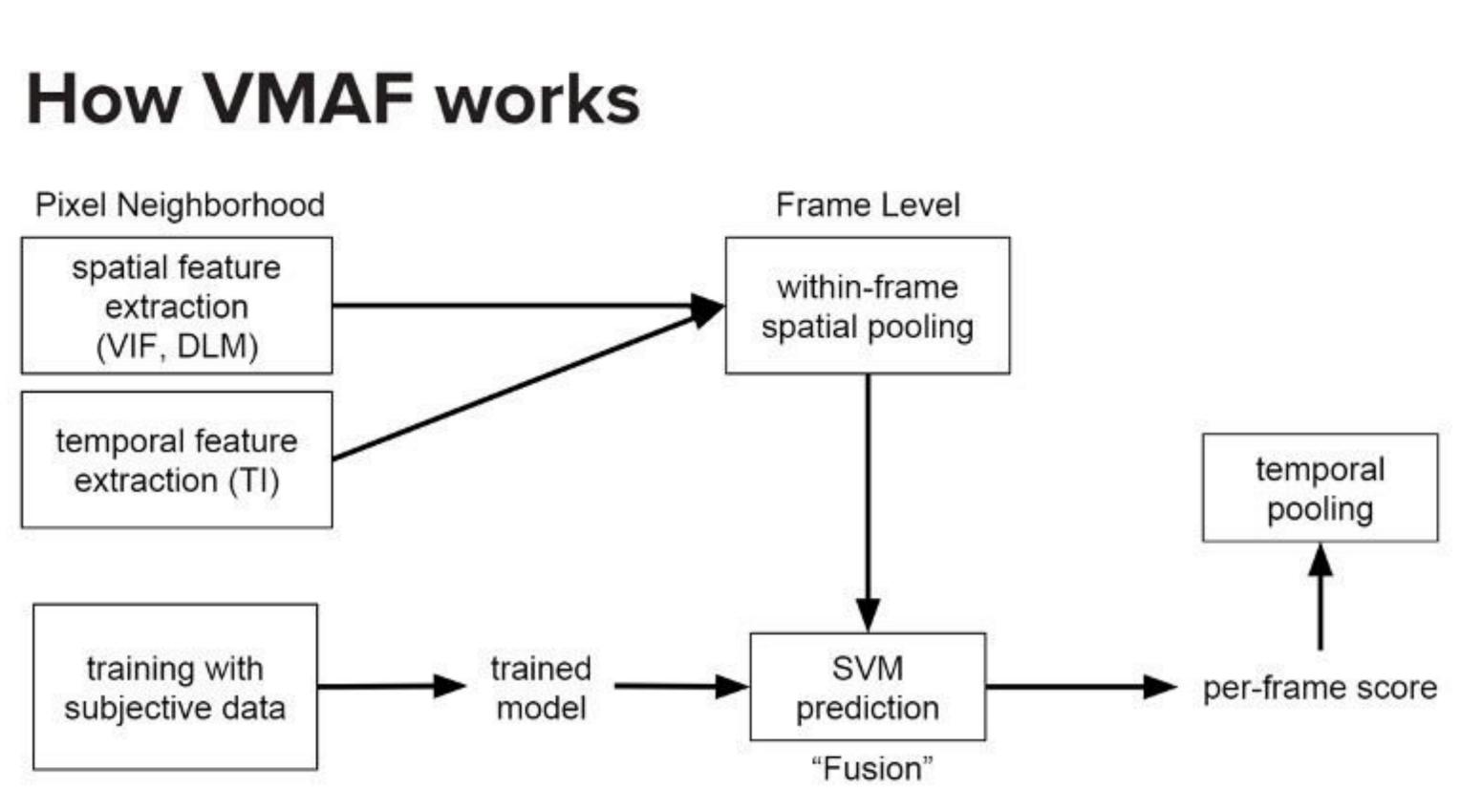
Learned Perceptual Image Patch Similarity The Unreasonable Effectiveness of Deep Features as a Perceptual Metric



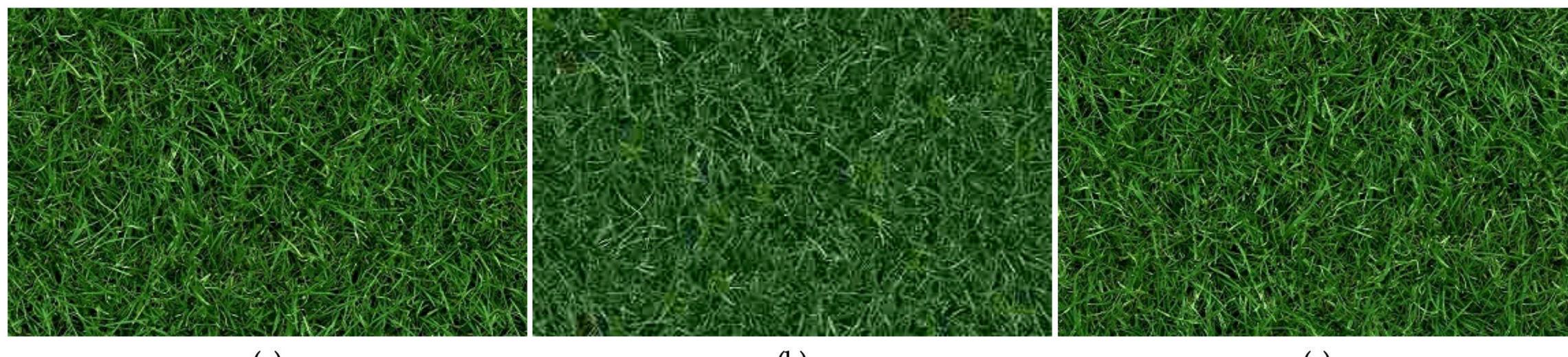
Distortions



VMAF Video Multimethod Assessment Fusion supervised learning over existing perceptual metrics



Part 3: Rate-Distortion-Perception tradeoff

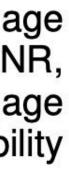


(a)

Fig. 1. Existing full-reference IQA models are overly sensitive to point-by-point deviations between images of the same texture. (a) A grass image and (b) the same image, distorted by JPEG compression. (c) Resampling of the same grass as in (a). Popular IQA measures, including PSNR, SSIM [3], FSIM [11], VIF [4], GMSD [12], DeepIQA [13], PieAPP [8], and LPIPS [7], predict that image (b) has a better perceived quality than image (c), which is in disagreement with human rating. In contrast, the proposed DISTS model makes the correct prediction. (Zoom in to improve visibility of details).

(b)

(c)



Theory

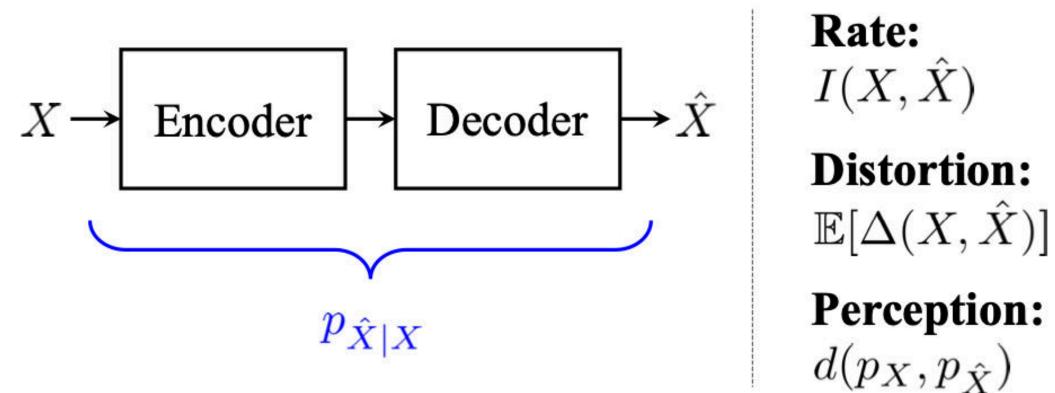
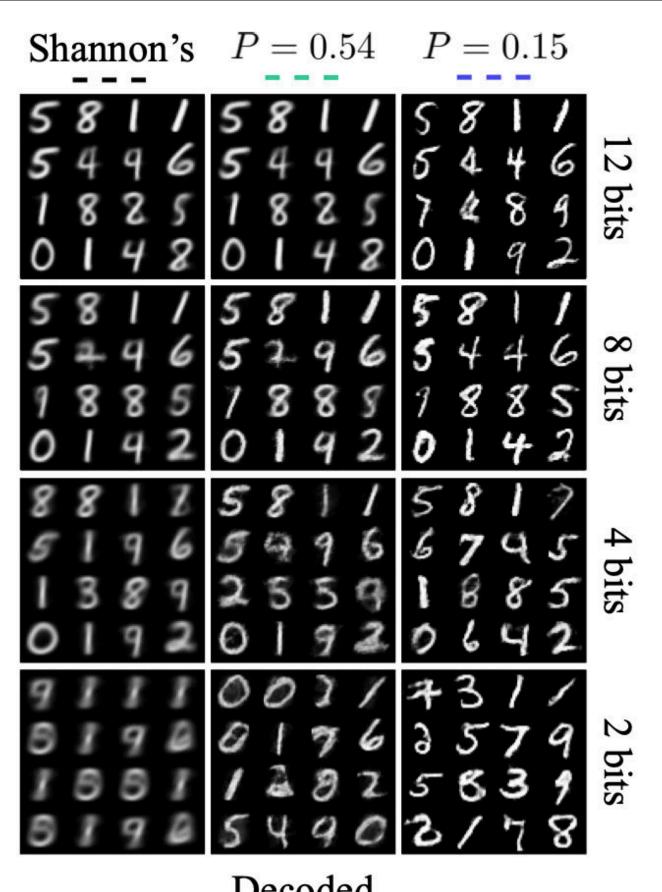
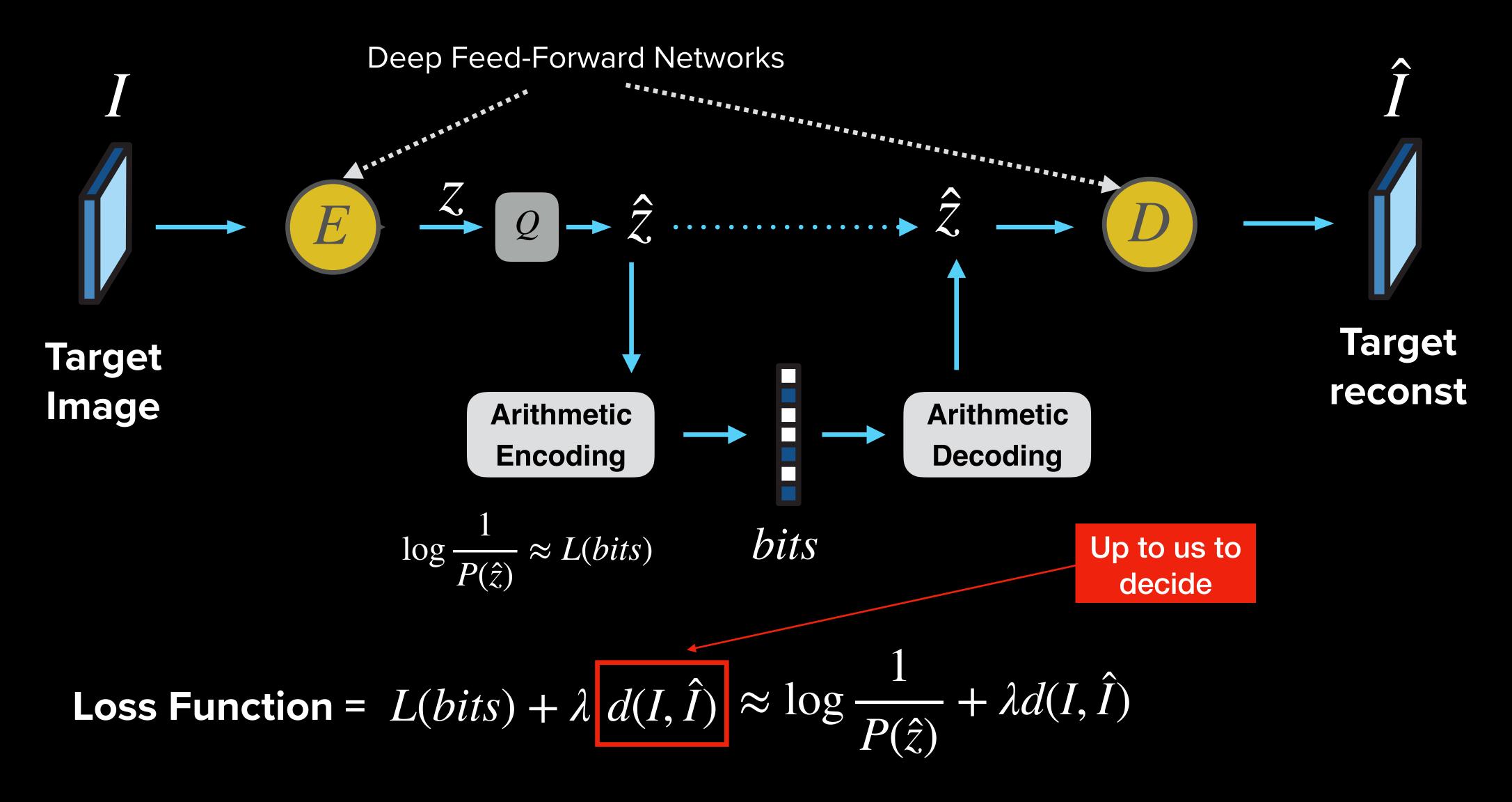


Figure 2. Lossy compression. A source signal $X \sim p_X$ is mapped into a coded sequence by an encoder and back into an estimated signal X by the decoder. Three desired properties are: (i) the coded sequence be compact (low bit rate); (ii) the reconstruction X be similar to the source X on average (low distortion); (iii) the distribution $p_{\hat{X}}$ be similar to p_X , so that decoded signals are perceived as genuine source signals (good perceptual quality).



Decoded



Idea 1: use a perceptual metric such as SSIM as distortion

Loss Function = $L(bits) + \lambda d(I, \hat{I})$

 $\approx L(bits) + \lambda SSIM(I, \hat{I})$



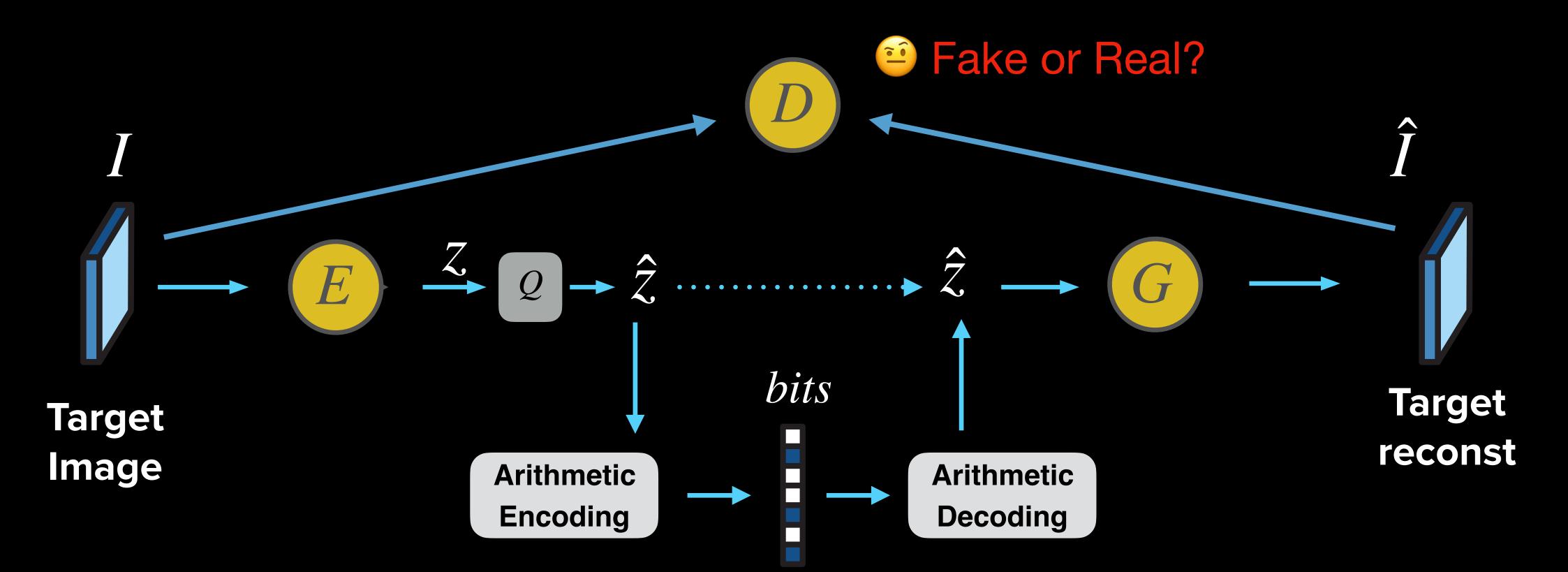
Idea 2: add a weighted MSE loss with some perceptual loss like LPIPS

Loss Function = $L(bits) + \lambda d(I, \hat{I})$

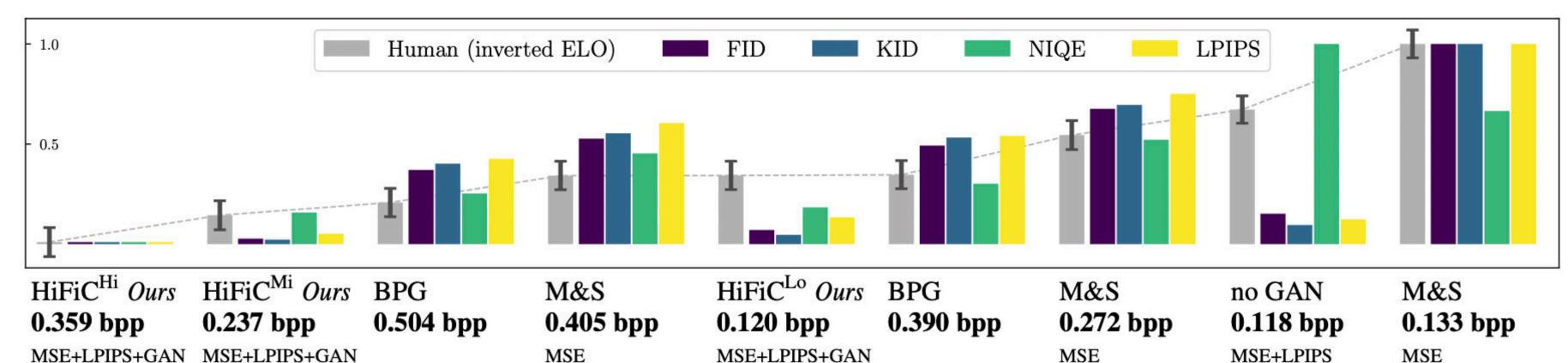
 $= L(bits) + \lambda_1 \mathbb{E}\left(\Delta(I, \hat{I})\right) + \lambda_2 d\left(p_I, p_{\hat{I}}\right)$

 $\approx L(bits) + \lambda_1 MAE(I, \hat{I}) + \lambda_2 LPIPS(I, \hat{I})$

Idea 3: Generative Adversarial Network like framework to ensure reconstruction and source have similar distribution

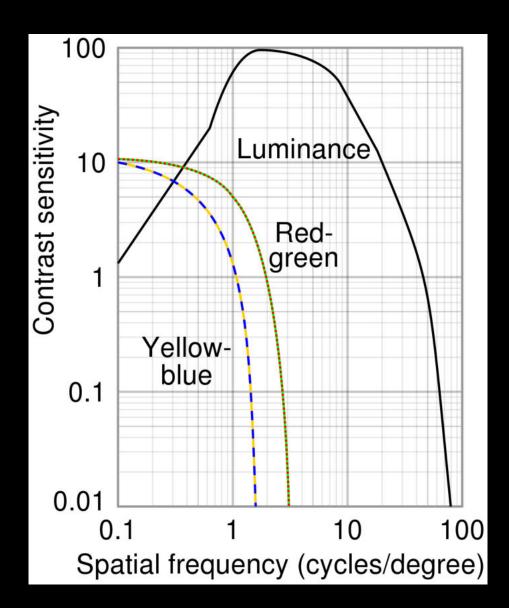


High-Fidelity Generative Image Compression (used conditional GANs + LPIPS in loss)



MSE+LPIPS+GAN MSE+LPIPS+GAN MSE

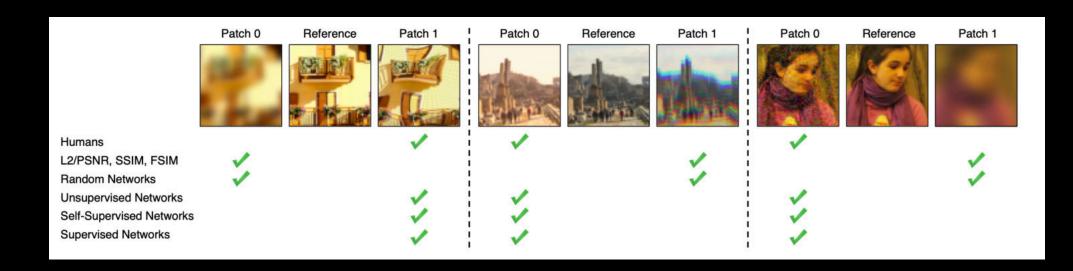
Figure 3: Normalized scores for the user study, compared to perceptual metrics. We invert human scores such that **lower is better** for all. Below each method, we show *average* bpp, and for learned methods we show the loss components. "no GAN" is our baseline, using the same architecture and distortion d as HiFiC (Ours), but no GAN. "M&S" is the Mean & Scale Hyperprior MSE-optimized baseline. The study shows that training with a GAN yields reconstructions that outperform BPG at practical bitrates, for high-resolution images. Our model at 0.237bpp is preferred to BPG even if BPG uses $2.1 \times$ the bitrate, and to MSE optimized models even if they use $1.7 \times$ the bitrate.



No Downsampling 429 kb

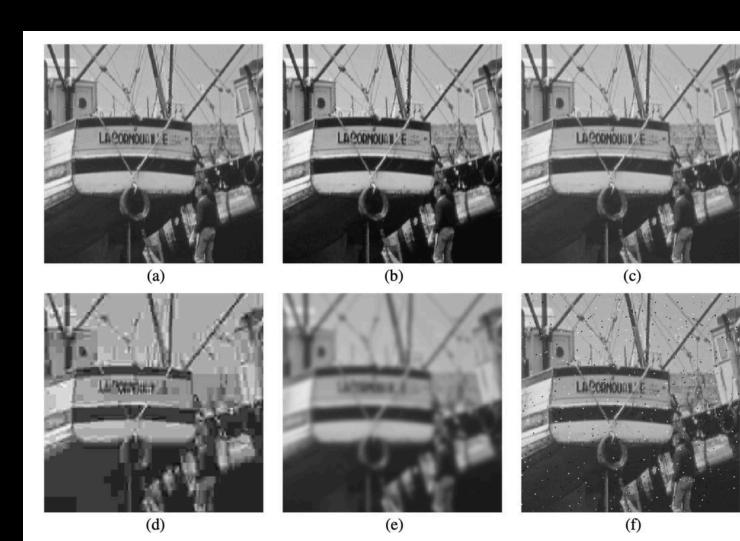
JPEG Compression No Downsampling 323 kb

Human Perceptual Properties play a key role in multimedia compression

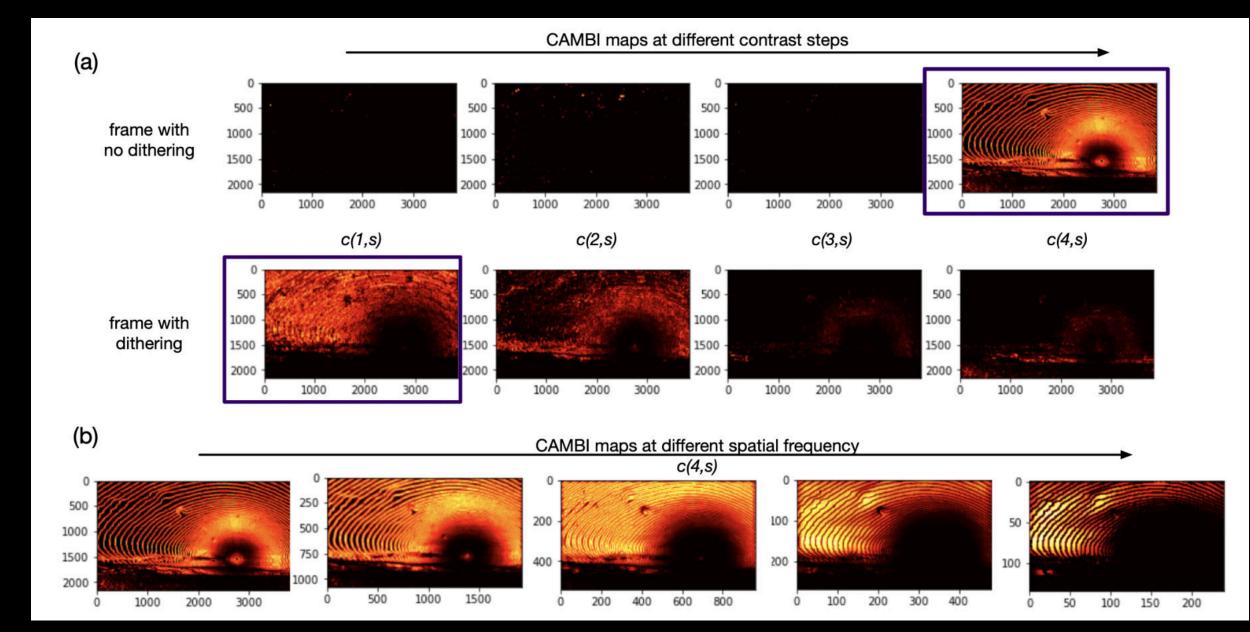


4:2:0 Downsampling 352 kb

JPEG Compression 4:2:0 Downsampling 176 kb

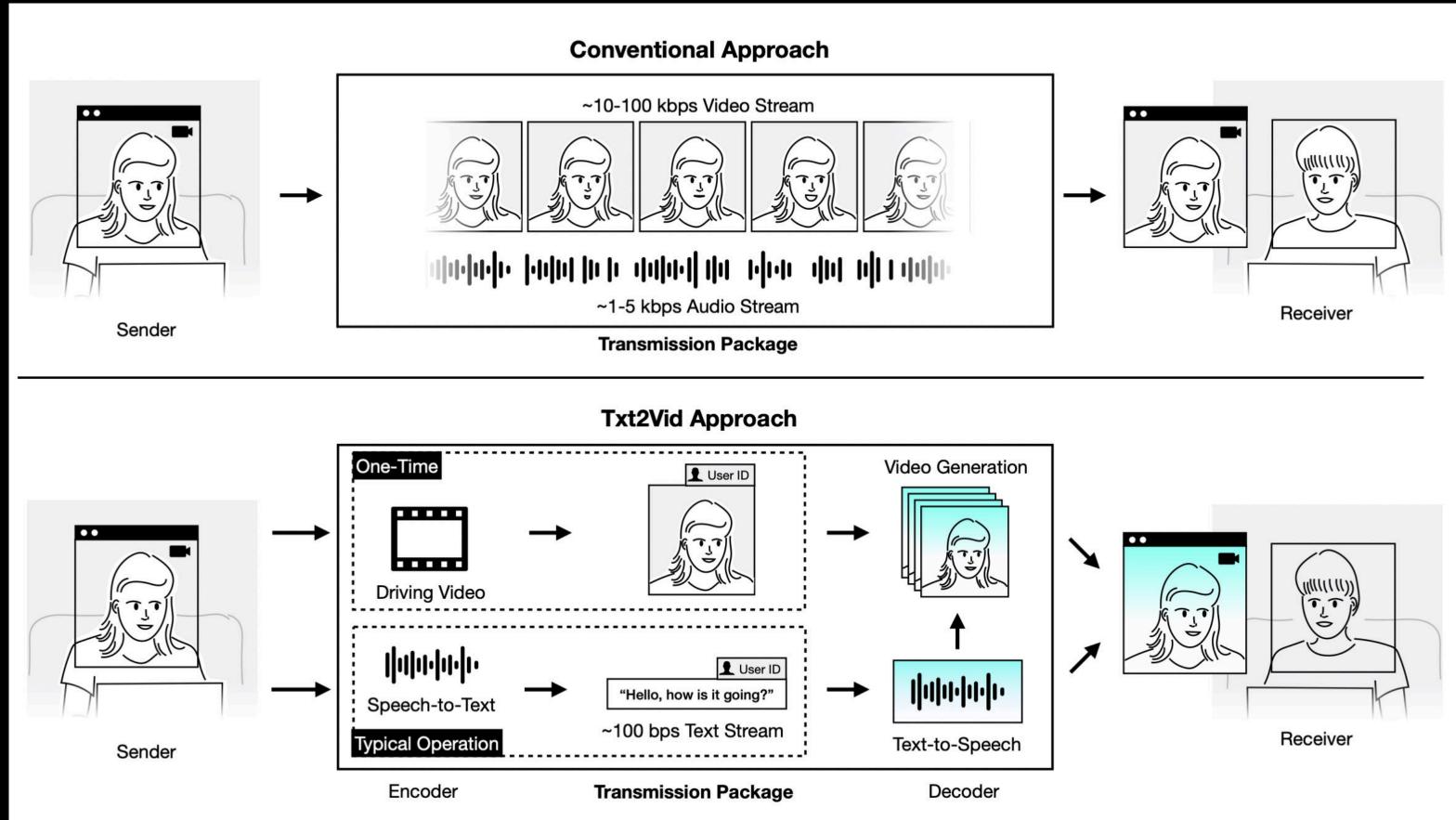


1. Detection and avoidance of visual artifacts using first-principles



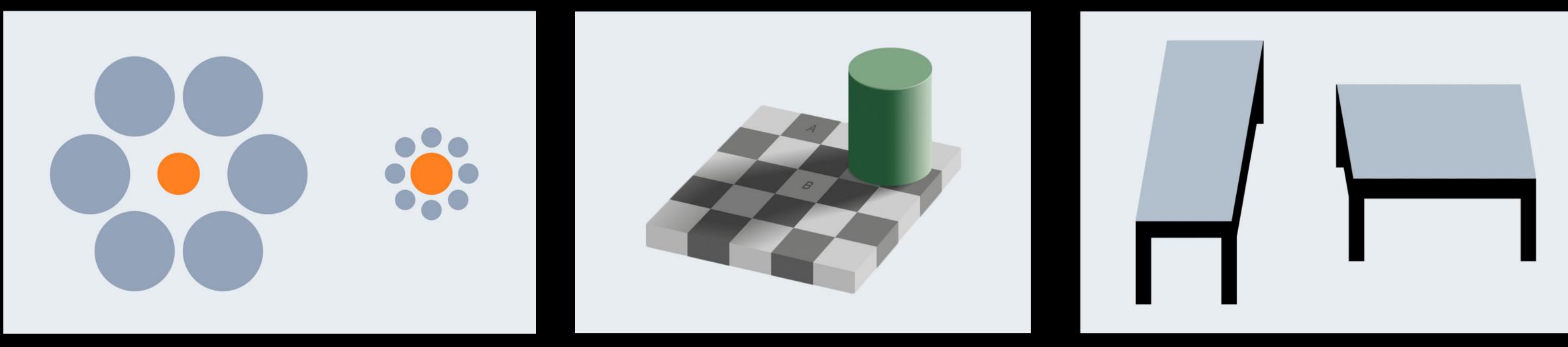
2. Automatic identification of visually-salient regions

3. Utilizing human-priors for ultra-low bitrate compression



- 4. Reproducible perceptual study design
- 5. Better theoretical understanding of Rate-Distortion-Perception formulation
- 6. Incorporating perceptual optimizations in traditional and learnt codecs

Hard interesting problems because a lot of not-so-well-defined variables involved such as human perception, image representation, display properties, viewing conditions, resolutions, human-variance, etc.



"Perception is an interpretation of the retinal image, not a description"

Foundations of Vision, Brian A. Wandell

